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a b s t r a c t 

We propose a heuristic approach to address the general class of optimization problems involving the 

capacitated clustering of observations consisting of variable values that are realizations from respective 

probability distributions. Based on the expectation-maximization algorithm, our approach unifies Gaus- 

sian mixture modeling for clustering analysis and cluster capacity constraints using a posterior regu- 

larization framework. To test our algorithm, we consider the capacitated p -median problem in which 

the observations consist of geographic locations of customers and the corresponding demand of these 

customers. Our heuristic has superior performance compared to classic geometrical clustering heuristics, 

with robust performance over a collection of instance types. 

© 2018 Elsevier B.V. All rights reserved. 
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1. Introduction 

In a capacitated clustering problem (CCP), a set of n observa-

tions must be partitioned into p disjoint clusters so that the total

dissimilarity within each cluster is minimized while each cluster’s

capacity (measured in terms of some characteristic of the obser-

vations) is obeyed. The CCP arises both as the primary task and

as a sub-problem in many real-world applications. For example,

when designing a distribution network, a set of customers must be

supplied goods from warehouses subject to the capacity of ware-

houses ( Salema, Barbosa-Povoa, & Novais, 2007 ). In the topological

design of computer communication networks, the network nodes

need to be divided into groups, and a concentrator location must

be selected for each group so that all the nodes in a group can be

assigned to the same concentrator without violating capacity con-

straints ( Pirkul, 1987 ). Recently, the CCP has also been applied to

genetics and population biology to solve the sibling reconstruction

problem ( Chou, Chaovalitwongse, Berger-Wolf, DasGupta, & Ash-

ley, 2012 ). In addition, many important applications such as mar-

ket segmentation, vehicle routing, and location-routing problems

involve solving the capacitated clustering as a sub-problem. 

In this paper, we propose a CCP heuristic based on a Gaus-

sian mixture modeling approach that incorporates the capacity

constraints. Specifically, we modify the well-known expectation-

maximization (EM) algorithm that iteratively determines maxi-

mum likelihood estimates for the parameters of the latent vari-
∗ Corresponding author. 
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ble mixture model ( Dempster, Laird, & Rubin, 1977 ). While the

M algorithm has been widely used in statistics, computer sci-

nce, and marketing research, it has limited usage in solving op-

imization problems arising in operations research, partially due to

he difficulty of incorporating external constraints. Using the poste-

ior regularization (PR) framework of Ganchev, Graça, Gillenwater,

nd Taskar (2010) , we account for the cluster capacity constraints.

R allows prior knowledge to be introduced into models that are

raditionally considered as unsupervised learning. Ganchev et al.

2010) show that prior knowledge can be encoded as constraints

n posterior probabilities and can be used to guide the outputs on

arious tasks in natural language processing such as part-of-speech

agging, word alignment, and dependency grammar parsing. 

As a testing arena for our approach, we consider the capacitated

 -median problem (CPMP), a classical location-allocation problem

nd one of the most-studied variations of the CCP. In the CPMP,

he observations consist of geographic locations of customers and

he corresponding demand of these customers; each cluster is con-

trained in the total amount of demand it may be allocated. 

This work makes the following contributions. To our knowledge,

his is the first CCP study to apply a Gaussian mixture model via

n EM-based algorithm with posterior regularization to address

he capacity constraints. We demonstrate the promise of this ap-

roach in our computational testing as our heuristic outperforms

he geometrical-clustering methods proposed by Mulvey and Beck

1984) and Ahmadi and Osman (2004) . Further, we investigate the

obustness of our approach with respect to the spatial distribution

f the observations and consider a case study based on real-world

ata to demonstrate the applicability of our approach. Moreover,

https://doi.org/10.1016/j.ejor.2018.04.048
http://www.ScienceDirect.com
http://www.elsevier.com/locate/ejor
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ejor.2018.04.048&domain=pdf
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e formulate stochastic variations of the CCP and demonstrate that

ur approach adapts to these variants. As such, our approach is

ble to consistently achieve high-quality feasible solutions to the

CP without relying on any elaborate search procedures. Due to its

ase of implementation and ability to accommodate cluster-level

onstraints, this procedure can potentially be used an initial con-

truction phase of a local search procedure tailored to a particular

pplication of the CCP. From a broader perspective, we believe that

ur work provides a novel integration of the fields of statistical

achine learning and operations research that could spur future

ork in this area. 

We begin the rest of the paper by first briefly reviewing related

iterature in Section 2 . Then, in Section 3 , we formally introduce

he CPMP as a mixed-integer linear programming (MILP) model. In

ection 4 , we review the Gaussian mixture model and the EM al-

orithm used to maximize the model likelihood. Then we describe

ow we adapt the PR framework to solve the CPMP in Section 5 .

n Section 6 , we present the computational results on determinis-

ic and stochastic versions of CPMP. In Section 7 , we present a case

tudy based on a real world dataset that provides an example of a

ituation well-suited to our approach. We present our conclusions

n Section 8 . 

. Related literature 

The literature contains both exact and heuristic approaches for

he CCP. Exact approaches rely upon integer programming for-

ulations of the CCP. Pirkul (1987) propose exact algorithms us-

ng branch-and-bound with Lagrangean relaxation on the par-

itioning constraints. Baldacci, Hadjiconstantinou, Maniezzo, and

ingozzi (2002) present a set partitioning approach. Lorena and

enne (2004) present column generation approaches and Ceselli

2003) and Ceselli and Righini (2005) develop a branch-and-

rice algorithm. Boccia, Sforza, Sterle, and Vasilyev (2008) present

 cutting-plane algorithm based on a formulation strengthened

y Fenchel cuts. However, because the CCP problem is NP-hard

 Mulvey & Beck, 1984 ), exact approaches often cannot guarantee an

ptimal solution within a practical amount of time for realistically-

ized problems. 

As an alternative to exact approaches, there have been many

tudies developing a variety of heuristic methods for the CCP prob-

em. Common meta-heuristics applied to the CCP include genetic

lgorithms ( Alp, Erkut, & Drezner, 2003; Correa, Steiner, Freitas,

 Carnieri, 2004; Jánošíková, Herda, & Haviar, 2017; Landa-Torres

t al., 2012 ), simulated annealing ( Osman & Christofides, 1994 ),

ariable neighborhood search ( Fleszar & Hindi, 2008 ), tabu search

 Bozkaya, Erkut, & Laporte, 2003; Osman & Christofides, 1994 ), bio-

omic algorithm ( Maniezzo, Mingozzi, & Baldacci, 1998 ), GRASP

 Deng & Bard, 2011 ), and scatter search ( Díaz & Fernandez, 2006;

cheuerer & Wendolsky, 2006 ). 

Local-search-based meta-heuristics begin by constructing an

nitial solution and iteratively improving it. Clustering algorithms,

uch as k -means or hierarchical clustering, are natural candidates

or the construction stage of a heuristic, but the key challenge is

ncorporating problem-specific knowledge such as capacity con-

traints. A naive algorithm could avoid merging two clusters or

top adding observations to a cluster if such an operation would

iolate the capacity constraints. The problem with this approach is

hat points naturally close to each other may be prevented from

eing grouped together because of the capacity constraint, while

oints that are far away may be forced into the same cluster

 Barreto, Ferreira, Paixao, & Santos, 2007 ). 

Successful heuristics for this problem should take a holistic per-

pective. To help reduce the need for extensive repairs by a local

earch phase, Mulvey and Beck (1984) adapt k -means clustering to

ccommodate cluster capacities by defining an assignment regret
uantity for each observation based on the notion of prioritizing

he cluster assignment of observations whose assignment alterna-

ives are the least desirable. Along this line, Ahmadi and Osman

2004) propose an improved definition of regret and introduced

he notion of density to the construction heuristic. Instead of ini-

iating the heuristics randomly, the cluster centers will be set on

he points that have high-density values. 

Instead of incorporating the capacity constraint in an ad hoc

anner, we rely upon a principled and robust model-based clus-

ering to conduct capacitated clustering. The flexibility comes

rom the fact that popular clustering heuristics are approximate

ethods for a certain model. For example, k -means and Ward’s

ethod maximize the Gaussian likelihood when the covariance

atrix is the same multiple of the identity matrix across mix-

ures ( Fraley & Raftery, 2002 ). As another example, Dasgupta and

aftery (1998) show that model-based clustering can be extended

o detect irregular shapes such as the parallel rectangles and ar-

ow shapes. Although not a focus in this paper, one can imagine

hat these structures can also be meaningful when taking capacity

nto consideration. 

. The capacitated p -median problem 

We describe the CPMP with the following integer linear opti-

ization model: 

in 

∑ 

i ∈I 

∑ 

j∈J 
c i j w i j (1) 

 . t . 
∑ 

j∈J 
w i j = 1 ∀ i ∈ I (2) 

∑ 

i 

d i w i j ≤ Cy j ∀ j ∈ J (3) 

∑ 

j∈J 
y j = p (4) 

 i j ∈ { 0 , 1 } ∀ i ∈ I, ∀ j ∈ J (5) 

 j ∈ { 0 , 1 } ∀ j ∈ J (6) 

here 

i = 1 . . . n is the index of points to allocate and also of possible

medians, where k medians will be located; 

j = 1 . . . n is the index of all possible cluster centers or medians;

d i is the demand of each point i and C is the capacity of each

possible cluster; 

c ij is the distance from point i to median j ; 

y j are binary variables, with y j = 1 if point y is selected to be a

cluster median; 

w ij are binary variables, with w i j = 1 if point i is assigned to

median j and w i j = 0 otherwise; 

The objective of the CPMP in (1) is to minimize the sum of dis-

ance from points to the cluster medians. Constraint (2) ensures

hat all points are allocated to exactly one cluster median. Con-

traint (3) imposes the constraints on cluster capacities, and con-

traint (4) sets the number of medians to k . Constraints (5) and

6) enforce the binary nature of the decision variables. 
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4. Model-based clustering with EM algorithm 

In this section, we describe Gaussian mixture model-based clus-

tering and our use of the expectation maximization algorithm with

posterior regularization (EMPR) to determine the maximum likeli-

hood estimates of the cluster parameters subject to posterior con-

straints ( Ganchev et al., 2010 ). We then apply this algorithm to in-

corporate capacity constraints into the model-based clustering. In

the EMPR framework, the constraints serve as indirect supervision

to the probabilistic learning framework. The posterior probability

distributions of latent variables are guided by the constraints to-

ward desired behavior. In the CCP, PR can sway the latent variables

(assignment of points) to conform to the capacity constraints while

trying to maximize the model likelihood. 

4.1. Capacitated Gaussian mixture model via the EMPR algorithm 

Let x 

(1) , . . . , x 

(n ) be a set of observations in R 

d that arise from

a mixture of k groups. The probability that a randomly selected ob-

servation comes from the j th mixture is π j , where 0 ≤π j ≤ 1 and∑ k 
j=1 π j = 1 . The mixture density is 

f (x ) = 

k ∑ 

j=1 

π j �(x | μ j , � j ) , (7)

where �( x | μj , �j ) denotes a Gaussian density with mean μ and

variance matrix �. We denote the probability that observation i

arises from the j th mixture as p (i ) 
j 

. 

The EM algorithm ( Dempster et al., 1977 ) is an iterative method

to compute the maximum likelihood estimation for probability

models with missing or latent data. In the context of mixture mod-

els, the observed data are the x ( i ) , and the latent part of the data

is z (i ) 
j 

with its value equal to 1 if x ( i ) belongs to mixture j , and 0

otherwise. The log-likelihood of the complete model is then 

l(π, μ, �, z) = 

n ∑ 

i =1 

log 

( 

k ∑ 

j=1 

π j �(x | μ j , � j ) 

) 

. (8)

To enforce constraints on the clusters, posterior regularization

defines the set of valid posterior distributions with respect to ex-

pectation of constraints. That is, suppose Q is a set of valid distri-

butions, q ( Z ) is a distribution of latent variables Z , and φ(X, Z) is a

function of observed variables X and latent variables Z . The desired

set of posterior distributions is 

Q = { q (Z) : E q [ φ( X, Z) ] ≤ b } . (9)

The objective is to determine parameters ( μ, �) that maximize

(8) subject to (9) . To maximize the likelihood of a Gaussian mix-

ture model, the EM algorithm alternates between the E-step and

the M-step while raising the lower bound of the model likelihood

in each iteration. When the constraint (9) is not present, the E-step

computes the conditional expectation of the latent variables given

the current value of the parameter estimates: 

p (i ) 
j 

= E(z (i ) 
j 

| x 

(i ) ;π, μ, �) = p(z (i ) = j| x 

(i ) ;π, μ, �) 

= 

p(x 

(i ) | z (i ) = j;μ, �) p(z (i ) = j;π) ∑ k 
l=1 p(x 

(i ) | z (i ) = l;μ, �) p(z (i ) = l;π) 
. 

(10)

We can find p(x 

(i ) | z (i ) = j;μ, �) by evaluating a multivariate

Gaussian density with mean μj and covariance �j at point x ( i ) . The

current estimate of mixture probability π j gives us p(z (i ) = j;π) . 

When the constraint is present, in order to find the q ( Z ) ∈ Q

such that (8) is maximized, Ganchev et al. (2010) show that at each

of E-step of the EMPR algorithm, we solve the following optimiza-

tion problem: 

min 

q 
KL (q || p θ (z| x )) s.t. E q [ φ( X, Z) ] ≤ b , (11)
here KL is the Kullback–Leibler divergence, which is a mea-

ure of the difference between two distributions. It is defined as

L (q || p) = 

∑ 

q q log (q/p) . 

The above problem can be solved more efficiently in its dual

orm 

ax 
λ≥0 

−b · λ − log Z(λ) , (12)

here Z(λ) = 

∑ 

Z 

p θ (Z| X ) exp [ −λ∗ · φ(X , Z)] , and the solution

o the primal is given by 

 

∗(Z) = 

p θ (Z| X) exp [ −λ∗ · φ(X, Z)] 

Z(λ∗) 
. (13)

Notice that in the E-step of the standard EM algorithm (without

R), we are solving min q KL ( q || p θ ( z | x )) (see Neal & Hinton, 1998 for

he proof). The optimal solution for q ( Z ) is p θ ( Z | X ), which is the

osterior probability of latent variables given the current param-

ters and the observed variables. In the EMPR framework, we in-

tead restrict q to the set Q defined in (9) . The restriction trades off

 smaller maximum lower bound of likelihood for desired posteri-

rs. Therefore, a simple way of interpreting the EMPR framework is

o add a penalty term exp [ −λ∗ · φ(X, Z)] to tune down the pos-

erior probability in the E-step of the EM algorithm for violations

f constraints. 

The M-step in the EMPR algorithm is the same as in the stan-

ard EM algorithm. That is, the M-step updates the model param-

ters: 

j ← 

1 

n 

n ∑ 

i =1 

p (i ) 
j 

, (14)

j ← 

n ∑ 

i =1 

p (i ) 
j 
x 

(i ) / 

n ∑ 

i =1 

p (i ) 
j 

, (15)

j ← 

n ∑ 

i =1 

p (i ) 
j 

(x 

(i ) − μ j ) / (x 

(i ) − μ j ) 
T / 

n ∑ 

i =1 

p (i ) 
j 

. (16)

.2. Parsimonious models 

A practical issue with multivariate Gaussian models is that the

umber of parameters grows rapidly with the number of clus-

ers. For example, in the facility-location problem with two dimen-

ions, a k -cluster full normal mixture model will have (number of

ean parameters) + (number of covariance parameters) + (num-

er of mixture proportion parameters) = 2 k + 3 k + (k − 1) = 6 k − 1

arameters. Too many parameters, when compared to the number

f data points, can result in issues such as degradation of perfor-

ance and under-specified models ( Raftery & Dean, 2006 ). In par-

icular, the estimation for a full covariance matrix will be singular

r near singular. 

Banfield and Raftery (1993) show that the covariance matrix

f a multi-variate Gaussian distribution can be parameterized in

erms of its eigenvalue decomposition in the form 

k = λk D k A k D 

T 
k . (17)

This approach was later generalized by Celeux and Govaert

1995) into Gaussian parsimonious clustering models. A parsimo-

ious model imposes various restrictions on covariance matrices

f the distribution by fixing λk , D k , or A k . Imposing these restric-

ions on the covariance matrices restricts the volume, orientation,

r shape of each cluster. We describe two parsimonious models EII

nd VII (using the notations in Fraley, Raftery et al., 2007 ). These

wo models set D k and A k to I and restrict the shape of the clusters

o be spherical. 

1. EII: �1 = · · · = �k = σ 2 I. In Model EII, σ 2 is the only unknown

covariance parameter. 
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1 Because a formal EM algorithm always converges to a local optima or a saddle 

point, we caution readers that our method is more properly defined as a pseudo-EM 
2. VII: �1 = · · · = �k = σ 2 
1 

I, . . . , σ 2 
k 

I. In Model VII, the number of

covariance parameters is equal to the number of clusters. 

In Model EII each cluster has an n -spherical shape and equal

olume. In Model VII the clusters are still n -spherical, but the vol-

mes are allowed to vary. When using a more restricted covariance

tructure, the inference for covariance parameters during the M-

tep becomes simpler. Instead of iterative optimization procedures

hich are required for the full model, many parsimonious models

ave closed-form solutions for � in the M-step. In Model EII, the

pdated σ 2 is 

2 = 

tr (W ) 

nd 
, (18) 

here W = 

∑ k 
j=1 

∑ n 
i =1 p 

(i ) 
j 

(x 

(i ) − x̄ j )(x 

(i ) − x̄ j ) 
′ . 

In the M-step of Model VII, σ 2 
j 

can be calculated as 

2 
j = 

tr (W j ) 

n j d 
, (19) 

here W j = 

∑ n 
i =1 p 

(i ) 
j 

(x 

(i ) − x̄ j )(x 

(i ) − x̄ j ) 
′ and n j = 

∑ n 
i =1 p 

(i ) 
j 

. 

Neither the full model nor parsimonious models other than EII

nd VII are able to give satisfactory performance in the CPMP prob-

ems we tested. This is mostly because typical CPMP instances use

uclidean distance as the cost measure, which naturally leads to

pherical-shaped clusters. When the costs are assymmetrical across

he dimensions, other more complicated variance structures can

e considered. For example, if it is more expensive to travel along

ne axis than another, we may consider model EEI ( Celeux & Go-

aert, 1995 ), which removes the restriction on A and allows for

llipsoidal-shaped clusters. 

. Model-based heuristic algorithm based on posterior 

egularization 

.1. Posterior regularization framework for capacitated clustering 

For a model-based CCP, we need to write the capacity con-

traint in terms of the expectation of q as in Eq. (11) . If we let

 

(i ) 
j 

= 1 represent the event that point i is assigned to cluster j , the

apacity constraint we want to include when forming clusters is 
 

i 

z (i ) 
j 

d i ≤ C, ∀ j. (20)

Constraint (20) states that the total capacity in each cluster

hould not exceed C . Expressing the above constraint as posterior

onstraints in an EM-algorithm, we have 

 q 

[ ∑ 

i 

z (i ) 
j 

d i 

] 

≤ C, ∀ j. (21) 

Computationally, the optimization problem is solved by maxi-

izing the dual at each E-step: 

max 
1 ···λk ≥0 

−
k ∑ 

j=1 

Cλ j − log 

( k ∑ 

j=1 

( n ∏ 

i =1 

p (i ) 
j 

exp (−
k ∑ 

j=1 

λ j 

n ∑ 

i =1 

d i p 
(i ) 
j 

) 
))

. 

(22) 

The maximization problem can be easily solved using standard

onlinear optimization methods such as the Broyden–Fletcher–

oldfarb–Shanno (BFGS) method with barrier. The primal solution

s given by 

 

(i ) 
j 

= p (i ) 
j 

exp 

( 

−λ j 

n ∑ 

i =1 

d i p 
(i ) 
j 

) 

/Z, (23)

here Z = 

∑ k 
j=1 q 

(i ) 
j 

, which is a normalization factor to ensure that

 is a valid probability distribution over each point i . 

a

.2. An example 

To illustrate the effect of posterior regularization, we simulate

hree 20-point groups; for each group of points, their ( x , y ) co-

rdinates follow a bivariate normal distribution with σ = 1 . 8 . The

oints in the first group centered at (7.5, 10) and the second group

entered at (10, 5) have demand of 0.5; the points in the third

roup centered at (5, 5) have demand of 2. 

The left plot in Fig. 1 shows the clustering result of the stan-

ard EM algorithm. As expected, the three groups with about an

qual number of points are formed according to their ( x , y ) co-

rdinates. If we set the capacity constraint of each cluster at 25,

hen the group at the bottom-left corner will violate this capacity

onstraint. The plot on the right of Fig. 1 shows the capacitated

lustering result using posterior regularization. We are able to at-

ain the clusters that respect the capacity constraints while having

oints in a group naturally close to each other. 

Given the adaptation of PR Framework described in Section 5.1 ,

e need several adjustments for practical considerations, which

e discuss in the next subsections. 

.3. Penalizing posterior distribution 

First of all, the number of dual decision variables in (22) , λj ,

quals the number of desired clusters k . Solving a problem with

 clusters will require solving a non-linear optimization problem

ith k decision variables at each iteration of EM. Second, we no-

ice that during the initial few iterations of EM, when there are

elatively large capacity violations in some clusters, the optimal λ
f the dual problems will be very large as well. Because EM con-

erges to a local maxima of log-likelihood, this may cause many

lusters to be empty in the final solution. In other words, adding

apacity constraints can result in increasing number of undesired

ocal optima. 

To mitigate these two issues, we propose that instead of ac-

ually solving the dual problem (22) (or more generally (12) ) in

he E-step using BFGS, we simply check if (21) is satisfied for the

urrent posterior probability matrix P ( Z | X ). More specifically, given

he parameters μ and � obtained from the last M-step, we cal-

ulate the posterior probability p (i ) 
j 

as in the E-step of regular EM

without PR). Then for each column j of the probability matrix we

alculate 
∑ 

i d i p 
(i ) 
j 

, and if the quantity is greater than the capacity

onstraint C , we apply a penalty to the column by multiplying it

y a penalty coefficient r , where 0 < r < 1, that is 

p (i ) 
j 

← rp (i ) 
j 

if 
∑ 

i 

d i p 
(i ) 
j 

> C, ∀ j. (24)

Lastly, to make sure that each row of the probability matrix is

 valid marginal distribution, we normalize them so that the sum

f each row is 1. 

While this adjustment results in much faster computation and

ore stable results, it nullifies the guaranteed likelihood increase

f the EM algorithm with PR at each iteration. 1 Fortunately, we be-

ieve this is less of an issue practically. As shown in Fig. 2 , the log-

ikelihood of the model still shows consistently increasing trends

cross the test instances. Our empirical evaluation shows that the

nal results are very sensible despite the non-guaranteed likeli-

ood convergence. After a number of iterations, the log-likelihood

ill vary within a small region. This indicates that eventually the

M algorithm will oscillate between several promising solutions

hen trying to balance between satisfying the constraints and fur-

her increasing the model likelihood. Therefore, we implement a
lgorithm and there is no guarantee of such convergence. 
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Fig. 1. An illustrative example of capacitated clustering based on PR framework. Points in the bottom-left corner, centered at (5, 5), each have demand of 2. The rest of the 

points each have demand of 0.5. The clustering results from the standard EM (left) would violate the capacity constraint of 25. EM with PR (right) produces clusters that 

satisfy the constraint. 

Fig. 2. Log-likelihood in EMPR heuristic. The figure shows the convergence of log-likelihood when using EMPR on the test instances ( Osman & Christofides, 1994 ). Instances 

p 1 to p 10 are on the left, and instances p 11 to p 20 are on the right. The squares mark the iterations when the convergence check is passed. 
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simple convergence check by calculating the log-likelihood after

every 5 iterations, and we check if the standard deviation of the

last 10 log-likelihoods is smaller than a certain threshold, ε. We

set ε = 1 for our experiments. 

5.4. The initialization of EM 

Researchers have proposed different initialization strategies

for CPMP heuristics. For example, Mulvey and Beck (1984) ini-

tialize using random nodes as centers. Osman and Christofides

(1994) propose a step to find a set of initial centers that are spread

out. Ahmadi and Osman (2004) and Osman and Ahmadi (2007) use

a density-based approach to locate the most promising centers. 

In our probabilistic model, there is no set of initial centers per

se . Instead, we can either specify the initial conditional proba-

bility matrix (the probabilities of nodes belonging to clusters) or

the initial mean vectors and covariance matrices in the context

of Gaussian mixture models. We adopt a simple random initial-

ization where the mixing proportions are generated from a sym-

metric Dirichlet distribution. Besides simplicity of implementation,

there are several reasons for us to choose this strategy: (1) it is

considered as the standard, and most frequently used initialization

strategy, for mixture models ( Karlis & Xekalaki, 2003 ); (2) a com-

prehensive numerical study by Biernacki, Celeux, and Govaert
2003) demonstrates that under low dimension, other more so-

histicated strategies offer no significant improvements; and (3)

isual inspection of final solutions produced by our heuristic shows

hat the quality of solutions depends more on the assignment of

odes, as the clusters are reasonably spread out. 

.5. Assignments of nodes and cluster medians 

After the iterations between the regularized E-step and the M-

tep have converged, we have a posterior distribution of the latent

ariable p θ ( Z | X ). We use the posterior distribution as a guide to

ssign nodes to clusters. 

We investigate several methods to assign the nodes to the clus-

ers with the posterior probability matrix p θ ( Z | X ). In the CPMP lit-

rature, orders of node assignment include: increasing or decreas-

ng order of demand, increasing order of distances from nodes to

edians, etc. Using the decreasing order of regret values is a pop-

lar choice; however the definitions of regret differ based on the

mplementation. 

Let O = o 1 , . . . , o k be the set of medians. For every node x i ,

ulvey and Beck (1984) define regret, R ( x i ), as the distance be-

ween the closest median, o i 1 , and the second closest median, o i 2 :

 (x ) = d(o , o ) , (25)
i i 1 i 2 
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Algorithm 1 Mixture model clustering via EMPR for the capaci- 

tated p -median problem. 

Input: coordinates of points x 

(i ) , (i = 1 , . . . , n ) with demand d i , 

number of clusters k , cluster capacity C 

Output: a set of k cluster medians; assignments from n points to 

medians. 

Parameters: penalization constant r 

Step 1. Initialization of EM 

Initialize a n × k matrix P with entries denoted as p (i ) 
j 

. 

Draw each row from a symmetric Dirichlet distribution (α = 1) . 

Step 2. EM Iterations 

while not convergence do 

for all cluster j do � Regular M-Step 

Update mixture parameters: 

π j ← 

1 
n 

∑ n 
i =1 p 

(i ) 
j 

, 

μ j ← 

∑ n 
i =1 p 

(i ) 
j 
x 

(i ) / 
∑ n 

i =1 p 
(i ) 
j 

, 

Update Σ j according to Eq. (18) or (19). 

end for 

for all point i do � Regular E-Step 

Update conditional probabilities: 

Compute p (i ) 
j 

← p(z (i ) = j| x 

(i ) ;φ, μ j , 
∑ 

∑ ∑ 

j ) using Eq. (10). 

end for 

for all cluster j do � Posterior Regularization 

if 
∑ 

i d i p 
(i ) 
j 

> C then 

p j ← rp j (multiply column j of P by r). 

end if 

end for 

for all point i do 

p (i ) 
j 

← p (i ) 
j 

/ 
∑ 

j p 
(i ) 
j 

(normalize each row of P ). 

end for 

end while 

Step 3. Cluster Assignment 

for all point i do 

Let R i ← p (i ) 
(1) 

− p (i ) 
(2) 

, 

where p (i ) 
(1) 

, p (i ) 
(2) 

are the largest and second largest entries in 

row i of P . 

end for 

for all decreasing i ∈ R i do 

while point i is not assigned or infeasible do 

j ′ ← arg max j∈ 1 ... k p 
(i ) 
j 

if Demand ( j ′ ) + Demand(i ) ≤ C then 

Assign point i to cluster arg max j∈ 1 ... k p 
(i ) 
j 

. 

else 

Set p (i ) 
j 

= 0 

end if 

end while 

end for 

Step 4. Determine Cluster Medians 

for all cluster j do 

Let i = arg min i ∈ 1 ... n 
∑ 

j 	 = i d(x 

(i ) , x 

( j) ) , 

set point i as median for cluster j. 

end for 

Step 5. Local Search 

while improvement do 

Best-improvement local search with shift neighborhood. 

Best-improvement local search with swap neighborhood. 

end while 
hmadi and Osman (2004) define the regret as the savings of as-

igning node i to the closest median compared with assigning it to

he second closest median: 

 (x i ) = d(a i , o i 1 ) − d(a i , o i 2 ) . (26)

We define our regret function as the difference between the

osterior probabilities of the two clusters with the highest prob-

bilities of generating x i : 

 (x i ) = p θ (z 1 | x i ) − p θ (z 2 | x i ) . (27)

Our regret function based on the posterior probabilities not

nly considers the location of medians (as in Mulvey & Beck,

984 ), and the relative location between nodes and medians (as in

hmadi & Osman, 2004 ), but also the entire probabilistic model. In

ther words, in addition to the geographic locations, the capacity

onstraint of all clusters is also implicitly considered. This allows

he heuristic to take a holistic view of the problem when assign-

ng the nodes. 

After assigning nodes to clusters, we determine the cluster me-

ians by simply choosing the node within each cluster that mini-

izes the within-cluster assignment cost. 

.6. Local search strategies 

Once we determine the cluster medians and the associated

odes, we can use local search to improve the solution. Our al-

orithm explores two different local search neighborhoods – shift

nd swap . The shift neighborhood contains the solutions generated

rom shifting one point assigned to one median to another median.

he swap neighborhood contains all pairwise interchanges of non-

edian nodes between clusters. For a given solution, if a certain

hift or swap operation will improve the current solution, and at

he same time not violate capacity constraints, the operation can

e made. We implement these moves within a best-improvement

earch strategy; we evaluate all possible moves from a current so-

ution and execute the move resulting in the best improvement (if

n improving move exists). 

Algorithm 1 formally describes the heuristic based on the EMPR

ramework that can be used to solve a CPMP. 

. Computational results 

.1. Analyses with test instances 

We test our algorithm’s performance using the 20 CPMP in-

tances coded as p 1 to p 20 from Osman and Christofides (1994) .

he coordinates of the points are randomly generated from a uni-

orm distribution [1, 100]. The demand values of each point are

lso generated from a uniform distribution [1, 20]. The first 10 in-

tances have n = 50 and k = 5 , and the other 10 instances have

 = 100 and k = 10 . We use the optimality gap of a heuristic al-

orithm to measure the performance of the algorithms. The opti-

ality gap of a heuristic algorithm is defined as 100 × (heuristic

bjective value - optimal objective value)/optimal objective value.

e code our heuristics in Java and perform all tests on an Intel i5-

570 processor under the Microsoft Windows 10 operating system.

We first study the effects of the posterior penalty parameter r

nd the choice of parsimonious models on the performance. Be-

ause the model choice and posterior penalty is most influential

n the solution construction stage, we report the average optimal-

ty gap from the solutions without conducting local search. We ob-

ain the optimal values by solving the integer programming model

ith the Gurobi MILP solver. 

Fig. 3 shows that Model VII offers higher quality solutions than

odel EII for the test instances. This is not surprising, because

odel VII explicitly parameterizes cluster size to be different, and
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Fig. 3. Effect of different posterior penalty parameters and Gaussian parsimonious models. 
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therefore has the potential to perform better when node demands

are more heterogeneous. Also, a posterior penalty r between 0.1

and 0.3 seems to offer the best results for the Model VII solutions.

We choose Model VII with penalty parameter r = 0 . 1 for subse-

quent studies. 

We compare results obtained by EMPR (Algorithm 1) with

other geometrical-based construction heuristics. We implement

the Mulvey–Beck (MB) heuristic ( Mulvey & Beck, 1984 ) on the

same computing platform and with the same local search proce-

dures. For EMPR (Algorithm 1) and the MB heuristic, we report

the best results from 40 runs, which is a standard strategy for a

randomly initialized clustering method. We also compare the per-

formance with other methods’ performances found in literature.

The density search constructive method (DSCM) is a method pro-

posed by Ahmadi and Osman (2004) , and uses a density function

to find cluster centers and then uses a regret function to find as-

signments. HOC is the naive construction algorithm used in Osman

and Christofides (1994) . 

Table 1 reports the computational results of the standard test

instances. In 7 out of 20 instances, EMPR (Algorithm 1) is able to

find the optimal solution. Further, the average optimality gap in

the construction stage is 1.92% and 0.465% after the local search

stage. All these metrics are superior to those of obtained by MB

and DSCM heuristics. 

6.2. Point pattern and performance of heuristics 

After confirming the effectiveness of model-based capacitated

clustering with standard test instances, we next investigate the im-

pact of spatial point patterns on the effectiveness of model-based

capacitated clustering. According to the definition of Hudson and

Fowler (1966) , point pattern is the characteristic of a set of points

that describes their locations in terms of the relative distances

and orientations among them. Point pattern analysis (PPA) has be-

come an important technique in many application areas, particu-

larly in crime analysis, epidemiology, and facility-location planning

and management ( Boots & Getis, 1985 ). It is also an essential com-

ponent of modern geographic information system (GIS) systems

( Fotheringham & Rogerson, 2013 ). However, despite the fact that

performance of locational decision making is systematically related

of the spatial characteristics ( Park, 1989 ), the analysis of spatial

patterns has received surprisingly little attention in the OR com-
unity. In the CCP literature, Mulvey and Beck (1984) and Osman

nd Ahmadi (2007) generated instances where ( x , y )’s are either

niformly distributed or drawn from a single normal distribution.

o the best of our knowledge, no CCP study has formally investi-

ated the relationship between specific PPA models and heuristic

erformance. 

Intuitively, because we build our method based on Gaussian

ixture models, we expect that if the spatial randomness of a CCP

hares similar characteristics with a 2 d Gaussian distribution, then

he performance of our model-based approach should be better.

ormally, a spatial point pattern consists of the locations of a finite

umber of points in a region R d , where the locations are modeled

s d -dimensional random variables. A PPA model describes how

he points to be clustered arise from a stochastic process. We con-

ider three classes of stochastic process. 

• Homogeneous Poisson Process (HPP): The HPP, also known as

complete spatial randomness (CSR), is defined as: for some

λ> 0, the number Y of events within the region S follows a

Poisson distribution with mean λ| S |, where |.| denotes a two-

dimensional area. 
• Modified Thomas Process (MTP): First described in Diggle, Besag,

and Gleaves (1976) , the MTP can be used to generate points

with natural clustering. It consists of three stages. Firstly, “par-

ent” points are distributed randomly over the plane according

to a Poisson process with density λ per unit area. Secondly,

each parent independently produces a random number of “off-

spring” according to a Poisson distribution with mean μ. Lastly,

the locations of these offspring are distributed according to the

symmetric radial Gaussian with parameter σ . 
• Simple Sequential Inhibition (SSI): This process can be used to

describe points which are regular in pattern. The points are dis-

tributed in the area one-by-one. The distribution of each sub-

sequent point is conditional on all previously realized points.

More specifically, each new point is generated uniformly in the

area, but the new point is rejected if it lies closer than r units

from any existing point. The process terminates when desired

number of points are generated. 

Fig. 4 represents the three basic types of point patterns. HPP

enerates complete spatial randomness, while the other two show

lustering and regularity patterns, respectively. For each of these

atterns, we generate 30 test instances with number of nodes
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Table 1 

Comparison of algorithmic performance on 20 instances from Osman and Christofides (1994) . 

EMPR (Algorithm 1) MB (implemented) DSCM (reported) HOC Optimal 

Const. LS Const. LS Const. LS 

1 713 713 713 713 713 713 786 713 

2 749 740 740 740 740 740 816 740 

3 770 754 779 764 758 753 972 751 

4 656 651 651 651 651 651 891 651 

5 674 674 696 666 666 666 804 664 

6 786 778 820 787 783 778 882 778 

7 792 792 811 788 787 787 968 787 

8 847 822 846 838 872 839 945 820 

9 724 718 718 717 724 724 752 715 

10 847 829 841 838 837 837 1017 829 

11 1033 1009 1026 1015 1006 1006 1761 1006 

12 986 975 976 969 974 970 1567 966 

13 1030 1026 1042 1026 1065 1056 1847 1026 

14 989 983 1019 988 1009 1009 1635 982 

15 1114 1096 1129 1105 1100 1099 1517 1091 

16 971 956 973 958 983 979 1780 954 

17 1036 1034 1071 1048 1124 1123 1665 1034 

18 1089 1058 1088 1053 1073 1062 1345 1043 

19 1071 1045 1077 1037 1066 1055 1634 1031 

20 1063 1018 1107 1059 1053 1051 1872 1005 

Avg. gap (%) 1.920 0.465 2.918 0.933 2.072 1.594 41.575 

Note: Const. considers the solution generated from the construction stage. LS considers the solution after 

a local search stage. 

Fig. 4. Examples of different point patterns. 

Table 2 

Optimality gap (%) under different point patterns. 

HPP (random pattern) MTP (clustered pattern) SSI (regular pattern) 

EMPR 1.93 1.59 1.88 

MB 2.51 4.07 2.96 

P -value (paired t -test) < 0.001 0.023 < 0.001 
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 = 100 , capacity C = 120 , and number of clusters k = 10 . The

ightness coefficients (total demand as a percentage of total ca-

acity) are uniformly distributed from 0.6 to 0.8. Given a specified

ightness coefficient, the demand for individual nodes are simu-

ated from a symmetric Dirichlet distribution with α = 2 . 

Table 2 summarizes the performance of EMPR (Algorithm 1)

nd the Mulvey–Beck heuristics on the three different point pat-

erns. We observe significant performance advantages for EMPR

cross all point patterns. The difference is particularly large when

odes have a natural clustered pattern (as shown in Fig. 4 b). The

verage optimality gap is 4.07% when using Mulvey–Beck, and only

.59% when using capacitated EM. The results further highlight the

eed of PPA before applying location-based heuristics, as these

euristics may provide different results for different spatial pat-

erns. 

s  
.3. Stochastic CPMP 

We now consider a variation of the CPMP in which the demand

f nodes are uncertain. Compared to the deterministic CPMP in

ection 3 , we make the following modifications to the model. 

• Demand at each node is a random variable with a known prob-

ability distribution. 
• The assignments of cluster medians must be completed before

actual demands become known. 
• The objective is to minimize the expected total assignment cost.

We formulate the stochastic CPMP using a chance-constrained

odel. In chance-constrained programing ( Charnes & Cooper,

959 ), a deterministic linear constraint set a T x ≤ b is replaced by a

et of chance-constraints P r(a T x ≤ b) ≥ 1 − α. The new constraint
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Table 3 

Performance of heuristics on stochastic CPMPs. 

α 0.02 0.1 

cv 0.05 0.1 0.05 0.1 

EMPR MB EMPR MB EMPR MB EMPR MB 

1 721 724 738 762 726 746 726 746 

2 740 748 748 748 740 740 755 748 

3 784 825 796 856 761 832 784 828 

4 657 680 657 679 655 675 655 692 

5 683 742 – 768 674 729 683 742 

6 782 825 919 1018 792 820 803 952 

7 840 811 – 957 820 811 824 815 

8 882 960 – 1054 860 962 882 936 

9 762 778 – – 727 729 – –

10 – – – – 851 1041 – –

11 1063 1073 1091 1112 1035 1072 1057 1085 

12 996 1005 1010 1007 997 1002 994 999 

13 1035 1084 1064 1126 1027 1058 1035 1099 

14 1026 1047 1040 1141 1012 1074 1020 1065 

15 1152 1189 1182 1235 1129 1151 1157 1179 

16 996 1022 1032 1124 991 978 990 1031 

17 1063 1117 1104 1182 1060 1089 1099 1114 

18 1176 1134 1178 1179 1114 1102 1174 1132 

19 1085 1123 1159 1118 1111 1088 1096 1135 

20 1237 1251 – – 1122 1224 – 1299 

Gap a 2.76% 4.22% 3.18% 3.91% 

a Gap is defined as the average of (MB-EMPR)/MB. 
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2 When the capacity constraint is tight, CCP becomes a bin packing problem in 

which clustering of the point is less relevant. 
set represents the probability that the deterministic constraint set

is satisfied, and α is the allowable probability for the violation. 

In the chance-constrained CPMP, we let the d i ’s be independent

random variables representing node i ’s demand, and α be the al-

lowed probability that the cluster exceeds its capacity. All other

parameters follow the definitions given in Section 3 . 

minimize 
∑ 

i 

∑ 

j 

c i j w i j (28)

subject to 

∑ 

j 

w i j = 1 ∀ i, (29)

P r 

( ∑ 

i 

d i w i j ≤ y j C 

) 

≥ 1 − α, ∀ j, (30)

∑ 

j 

y j = k, (31)

w i j , y j ∈ { 0 , 1 } , ∀ i, j. (32)

Charnes and Cooper (1959) and researchers in stochastic vehi-

cle routing (for example Gendreau, Laporte, & Séguin, 1996 ) have

shown that chance-constrained models can be transformed into

deterministic optimization models. However, the transformed de-

terministic model is often non-convex and therefore requires sig-

nificantly more effort to find exact solutions. We adapt Algorithm

1 to the chance-constrained model. We consider two cases: (1) de-

mands follow a Poisson distribution, and (2) demands follow a nor-

mal distribution. 

6.3.1. Poisson demand 

Suppose that the demand in node i follows an independent

Poisson distribution with mean μi . Because the sum of indepen-

dent Poisson random variables is also Poisson distributed, the

chance constrained capacity constraint can be written in the fol-

lowing deterministic form, 

y j C ∑ 

k =0 

e −
∑ 

i μi w i j 
( 
∑ 

i μi w i j ) 
k 

k ! 
≥ 1 − α, ∀ j. (33)

In order for the above constraint to be satisfied, we need to first

find a Poisson random variable ω with mean ˆ μ such that P r(ω ≤
) ≥ 1 − α, and then let ∑ 

i 

μi w i j ≤ ˆ μy j , ∀ j. (34)

For a stochastic CPMP problem, we can use a binary search to

find ω because the Poisson CDF is monotonically decreasing in

terms of ˆ μ ( Lin, 2009 ). Once ω is determined, constraint (34) is

equivalent to the capacity constraint in a deterministic CPMP. We

omit the discussion of this trivial case. 

6.3.2. Normal demand 

Suppose that the demands are independently normally dis-

tributed with mean μi and standard deviation σ i for node i . In

cluster j , the total demand is normally distributed with mean

�i μi w ij and standard deviation 

√ ∑ 

i σ
2 
i 

w i j . The chance constraint

is equivalent to the deterministic constraint, 

y j C −
∑ 

i μi w i j √ ∑ 

i σ
2 
i 

w i j 

≥ z 1 −α, ∀ j, (35)

which can be rewritten as 

z 1 −α

√ ∑ 

i 

σ 2 
i 

w i j + 

∑ 

i 

μi w i j ≤ C, ∀ j. (36)
The equivalent deterministic model is now a nonlinear (non-

uadratic) binary program that cannot generally be solved us-

ng standard optimization packages. Fortunately, both the Mulvey–

eck heuristic and the EM algorithm can be adapted to solve the

hance-constrained CPMP. For the Mulvey–Beck heuristic, we can

hange how nodes are assigned to current medians. The feasibility

heck of whether cluster demand is exceeded after an assignment

ill be replaced by Eq. (36) . 

For Algorithm 1, we can replace Eq. (24) by 

p (i ) 
j 

← rp (i ) 
j 

if z 1 −α

√ ∑ 

i 

σ 2 
i 

p (i ) 
j 

+ 

∑ 

i 

μi p 
(i ) 
j 

> C, ∀ j. (37)

Table 3 shows the performance comparison between Algorithm

 (EMPR in Table 3 ) and Mulvey–Beck heuristic (MB) for the

ormally-distributed demand case. We assume demand follows a

ormal distribution with mean equal to the deterministic demand

pecified in the test instance, and with a known standard deviation

enerated according to one of two levels of coefficients of variance,

v = 0 . 05 or cv = 0 . 1 . We evaluate the performance when α = 0 . 02

nd α = 0 . 1 . For some instances, the heuristics are not able to

enerate a feasible solution due to the tightness of capacity con-

traints. 2 For other test instances, EMPR generally outperforms its

eometrical counterpart. On average, EMPR performs better than

ulvey–Beck by a range between 2.76% to 4.22% in our test in-

tances. 

. Case study 

We present a case study using a real-world dataset that repre-

ents a plausible use case for our modeling framework and solu-

ion methodology. Specifically, we use the Sidewalk Café Licenses

nd Applications dataset from the New York City (NYC) OpenData

roject ( data.cityofnewyork.us ). The dataset contains detailed infor-

ation about sidewalk café license applications filed between 2015

nd 2017, including the businesses’ names and addresses, latitudes

http://data.cityofnewyork.us
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Fig. 5. Distribution of sidewalk cafés in New York City. 
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Table 4 

Comparison of solutions using the NYC-café dataset. 

EMPR (Algorithm 1) Mulvey–Beck Optimal 

Obj. Gap Obj. Gap 

2015Q4 34,927 0.43% 35,195 1.20% 34,779 

2016Q1 30,708 1.42% 30,803 1.74% 30,277 

2016Q2 34,427 3.03% 34,766 4.04% 33,415 

2016Q3 24,436 2.03% 25,382 5.98% 23,950 

2016Q4 29,476 0.14% 29,837 1.36% 29,436 

2017Q1 32,614 0.00% 34,591 6.06% 32,614 

2017Q2 38,930 0.69% 39,505 2.18% 38,663 

2017Q3 28,183 1.09% 28,349 1.69% 27,879 

2017Q4 24,782 0.50% 25,557 3.65% 24,658 

Avg. gap 1.04% 3.10% 
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nd longitudes, number of tables and chairs requested, and appli-

ation dates. We use the latitudes and longitudes of the cafés as

emand locations ( Fig. 5 ). The number of chairs in the application

erves as a proxy for the demand at that location. 

We consider two different scenarios that require solving CPMP

roblems. The first scenario is equivalent to the original CPMP for-

ulation in Section 3 . That is, we divide the cafés into k clusters,

ach having a demand capacity C . We create one CPMP instance

or each quarter represented in the data, from the fourth quarter of

015 (2015Q4) to the fourth quarter of 2017 (2017Q4). The number

f points in each instance ranges from 142 to 165. We set k = 5

or each instance, and we set the demand capacity C based on a

ightness coefficient equal to 0.6. A hypothetical example of this

cenario could be of a delivery company that needs to set up five

obile depots in the NYC area to deliver fresh produce or other

upplies to new cafés. Each of these mobile depots can be reas-

igned in each quarter. The total delivery amount in a period can-

ot exceed the available capacity of the depots. Alternatively, we

an consider each quarter as a separate problem instance rather

han being temporally connected. 

The second scenario tests the robustness of the performance

f our model-based capacitated clustering. It is also the scenario

ost likely to be faced by decision makers in practice. Under

his scenario, the decision maker solves a CPMP based on the ob-

erved point pattern in the first period and builds permanent de-

ots located at the cluster medians. For the subsequent periods,

he decision maker can assign new points to a fixed depot, but

annot choose new medians. Previously, via a simulation study,

e showed that the model-based approach performs better if the

istribution pattern of the points has a natural clustering rather

han being completely random or completely regular. If the gener-

tion of the new points in the real-world also conforms to such

lustering—for example, new cafés are more likely to be estab-
ished in business districts or near public transportation—then we

xpect the assignment costs based on the cluster medians from the

odel-based approach to be well-managed. 

We first compare the performance of EMPR (Algorithm 1) and

ulvey–Beck heuristic for the 9 new test instances (NYC-Café).

s we have seen previously, the penalty coefficient r in our al-

orithm is an important tuning parameter. The parameter r that

erformed well in our previous standard test instances may not

erform as well in this particular application. Therefore, we could

se a grid search procedure (as in Fig. 3 ) to find recommendations

or r , but each problem requires 20 trials to reach a resolution

f 0.05. Here we adopt a more efficient hyper-parameter tuning

ethod called Bayesian optimization ( Snoek, Larochelle, & Adams,

012 ) to choose an optimal r for each problem. The premise of

ayesian optimization is that similar inputs ( r ) yield similar out-

uts (objective). In addition, finding the best hyper-parameter re-

uires both exploration, i.e, trying input values that are different

rom prior experiments, and exploitation, i.e., trying input values

hat are close to the best setting so far. Bayesian optimization uses

 Gaussian process, a flexible distribution on functions, to fit the

elationship between r and the quality of the solution. Bayesian op-

imization leverages results from prior experiments sequentially to

nd the most promising input value to try next. When the experi-

ents are time-consuming as in combinatorial optimization prob-

ems, Bayesian optimization tends to be more efficient than ex-

austive search. We refer the reader to Snoek et al. (2012) for a de-

ailed tutorial of Bayesian optimization. We use the Bayesopt pack-

ge ( Martinez-Cantin, 2014 ) to search for the optimal r in 20 trials.

he optimal r ranges from 0.06 to 0.54 with the average equal to

.16 in our NYC-Café instances. 

Table 4 presents the results for the first scenario. The optimal

olutions are obtained from the Gurobi MILP solver. EMPR (Algo-

ithm 1) outperforms the geometrical counterpart for all the test

nstances. The average optimality gap for EMPR is 1.04% and the

ap for Mulvey–Beck is 3.10%. The Wilcoxon Signed-Rank Test con-

rms that the difference is statistically significant ( W = 0 , critical

alue = 5 at p = 0 . 05 ) . 

Finally, we compare the assignment costs of new points un-

er the second scenario. We solve the CPMP for the test in-

tance generated with the first quarter data (2015Q4) using EMPR

Algorithm 1) and Mulvey–Beck algorithm, respectively. We then

etain the cluster medians from the 2015Q4 instance and use

hem as fixed cluster centers for the eight subsequent quar-

ers. We assign the new points in each of the quarters to the

xed cluster medians using a decreasing order of regret, defined

s the difference between the closest and second closest medi-

ns. The best-improvement local search procedure is used to im-

rove the assignment of the points. Table 5 compares the as-

ignment costs for the two methods and the percentage improve-

ent obtained using Algorithm 1. As we hypothesized, EMPR out-
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Table 5 

Comparison of predictive performance of cluster medians. 

EMPR (Algorithm 1) Mulvey–Beck Improvement (%) 

2016Q1 43,596 48,903 10.85% 

2016Q2 46,706 4 9,96 8 6.53% 

2016Q3 77,234 102,182 24.42% 

2016Q4 35,736 36,536 2.19% 

2017Q1 45,283 47,260 4.18% 

2017Q2 53,025 56,498 6.15% 

2017Q3 42,752 46,204 7.47% 

2017Q4 41,519 56,861 26.98% 

Avg. 11.10% 
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performs the Mulvey–Beck by an average of 11.10% if the cluster

centers were retained from the first period. This provides evidence

that the model-based CCP possesses a robust ability to locate the

most likely median if both the points and demands arise from a

natural clustering process. 

8. Conclusion and future research 

In this study, we present a new model-based heuristic for

the CCP. Our heuristic differs from prior construction heuristics

( Ahmadi & Osman, 2004; Mulvey & Beck, 1984 ) in that a single

statistical model is used to describe the objective and the con-

straint. We use posterior regularization on the EM algorithm to

maximize the model likelihood. Our method is competitive on the

standard test instances as well as problems generated from a real-

world dataset. In addition, we investigate the effect of node-point

patterns on the performance of different heuristics. We extend the

algorithm to stochastic variants of a CCP, thereby demonstrating

the robustness of the framework. 

The model-based CCP and the EMPR algorithm provides a

promising modeling and solution framework for a wide range of

the problems, e.g., social network of actors ( Handcock, Raftery, &

Tantrum, 2007 ), genetic data, etc. One benefit of model-based clus-

tering is that it also provides an approach of choosing the number

of clusters using model selection techniques in statistics. This may

be used to extend our method to solve a more general problem,

e.g., simultaneously deciding the location and the number of ser-

vice depots for customers, while each service depot has a capacity

constraint. In terms of methodology extension, Tu, Ball, and Jank

(2008) and Jank (2006) propose a stochastic variation of the EM

algorithm based on genetic algorithms to search for the global so-

lution; this may provide another promising extension for our ap-

proach. Additionally, future researchers could study how to gener-

alize the variance matrices in model-based clustering (e.g. using

structures such as Kronecker product) to balance computational

complexity and model applicability. Finally, the EM algorithm can

be adapted to the Map-Reduce computing paradigm ( Chu et al.,

2006 ), and it may be of interest to investigate how the proposed

algorithm’s speed can be increased in a multi-core machine or

computer cluster. 
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