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This study introduces deep learning models for corporate bankruptcy forecasting using textual disclo- 

sures. Although textual data are common, it is rarely considered in the financial decision support models. 

Deep learning uses layers of neural networks to extract features from textual data for prediction. We con- 

struct a comprehensive bankruptcy database of 11,827 U.S. public companies and show that deep learning 

models yield superior prediction performance in forecasting bankruptcy using textual disclosures. When 

textual data are used in conjunction with traditional accounting-based ratio and market-based variables, 

deep learning models can further improve the prediction accuracy. We also investigate the effectiveness 

of two deep learning architectures. Interestingly, our empirical results show that simpler models such as 

averaging embedding are more effective than convolutional neural networks. Our results provide the first 

large-sample evidence for the predictive power of textual disclosures. 

© 2018 Elsevier B.V. All rights reserved. 
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. Introduction 

Corporate bankruptcy is one of the main drivers of the credit

isk and gains primary attention from creditors and investors. The

nancial damage inflicted by corporate bankruptcy cannot be over-

tated. The 2008-2010 financial crisis has also shown that in aggre-

ate the corporate bankruptcy events have a profound influence

n the economy. Corporate bankruptcy may incur a strong nega-

ive social cost and further propagate recession and thus jeopardize

he economy at large ( Bernanke, 1981 ). An accurate bankruptcy

orecasting model, therefore, is valuable to practitioners, regulators,

nd academic researchers alike ( Ding, Tian, Yu, & Guo, 2012 ). Regu-

ators can use the model to monitor the financial health of individ-

al institutions and curb systemic risks. Practitioners rely on pre-

icted default probability to price corporate debt and for internal

atings ( Schönbucher, 2003 ). For academics, corporate distress risk

an help calibrate various theoretical models, such as explaining

nomalies in the standard CAPM ( Campbell, Hilscher, & Szilagyi,

008 ). For these reasons, researchers search for more effective pre-

iction models to forecast bankruptcy and financial distress. 

Studies in bankruptcy prediction routinely adopt measures in-

luding firms’ stock market trading information and accounting
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ata from company’s financial statements to forecast bankruptcy.

ating back to Altman (1968) , research has shown that accounting-

ased ratios and stock market data offer signals on whether a

rm is financially healthy or may step into severe trouble like

ankruptcy. Given the high impact of corporate bankruptcy events,

esearchers in operational research (OR) and artificial intelligence

AI) further propose intelligent models to forecast bankruptcy. New

odeling techniques include boosting, discriminant analysis, sup-

ort vector machine, and neural networks ( Alfaro, García, Gámez, &

lizondo, 2008; Bose & Pal, 2006; Geng, Bose, & Chen, 2015 ), data

nvelopment analysis ( Li, Crook, & Andreeva, 2014 ), least absolute

hrinkage and selection operator ( Tian, Yu, & Guo, 2015 ), dynamic

lacks based model ( Wanke, Barros, & Faria, 2015 ), two-stage clas-

ification (du Jardin, 2016 ), to name a few. 

A common element of those models is the application of

arket-based and accounting-based variables, which are usually

onstructed using numeric data in a well-structured format. Yet,

here is growing recognition that text disclosure — a form of un-

tructured, qualitative data — plays an equally important role in

ow information is conveyed to the public. For example, a vast

roportion of public firm’s annual filings to regulatory agencies

re textual disclosures. Also, policymakers and market participants

onsume a large amount of financial reports and news articles ev-

ry day. Despite its ubiquity, effective integration of textual dis-

losure in financial models remains a challenging mission due to

he difficulty in both obtaining and quantifying textual data ( Lang

 Stice-Lawrence, 2015 ). Recent studies have demonstrated strong
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evidence that qualitative corporate filings contain valuable infor-

mation about credit risk ( Campbell, Chen, Dhaliwal, Lu, & Steele,

2014; Loughran & Mcdonald, 2011 ). Most studies, however, rely on

simple text summarization techniques such as word count, sen-

timent, and readability. The information and signals in financial

text go well beyond these measures ( Bozanic & Thevenot, 2015 ).

To leverage the full value of the textual disclosures, the need for

more effective algorithms to extract and exploit information from

textual data is higher than ever. 

In this research, we shed lights on this issue by proposing a

new deep learning method to forecast bankruptcy and assessing

the predictive power of textual data. Deep learning is a machine

learning paradigm that combines multiple layers of neural net-

works to learn representations of data with multiple levels of ab-

straction ( Le Cun et al., 2015 ). These deeper neural networks have

shown promising results in many areas including image recogni-

tion, language processing, and machine translation thanks to their

ability to extract features from unstructured data such as image

and text. Motivated by these observations, we aim to design a deep

learning approach to predict firm bankruptcies using textual dis-

closures. We first construct a comprehensive database of 11,827 U.S.

public traded firms over the period of 1994-2014. The database

consists of numeric variables generated from accounting and stock

market data. We then extract the qualitative discussion section,

Managerial Discussion & Analysis (MD&A), from firm’s annual filing

and match with our observations. We investigate different model

set-ups using varying input data. Our empirical study shows that

a simple deep learning model using an average of the embedding

layer outperforms other data mining models when textual infor-

mation is used. More importantly, we find that the textual data can

complement the traditional accounting-based and market-based

variables in predicting bankruptcy. The deep learning model using

both textual and numeric inputs has improved prediction accuracy

over the models using a single type of input. 

Our study makes several important contributions. First, to the

best of our knowledge, this paper is the first large-sample analysis

of bankruptcy prediction using textual disclosures. To date, there

is limited empirical evidence on whether financial disclosure in

textual form can be used in an intelligent system for bankruptcy

prediction. Our study complements the literature by adding new

insights on how textual data can signal early warning signs for

corporate bankruptcy events. Second, we show that deep learn-

ing is a promising framework for predicting financial outcomes.

Although using artificial neural networks for bankruptcy predic-

tion has a long history ( Wilson & Sharda, 1994; Zhang, Hu, Patuwo,

& Indro, 1999 ), prior studies use numerical inputs combined with

shallow networks (i.e., one or two layers). We provide strong evi-

dence that a trained deep neural network system can discriminate

bankruptcy and non-bankruptcy firms, especially when the input

includes textual information. Third, we also contribute to the nat-

ural language processing literature by showcasing an impactful ap-

plication area. Current deep learning research on natural language

processing (NLP) has shown considerable progress on tasks such as

parsing sentences and machine translation, but little is known as

to whether financial institutions and regulators can apply this bud-

ding technique. Our research points to a new area to which deep

learning research can contribute. Not only predicting financial dis-

tress is of great practical importance, but it is also an area where

ground truth dataset can serve as the foundation of a common task

framework ( Hofman, Sharma, & Watts, 2017 ). 

The rest of the paper proceeds as follows. We review perti-

nent literature on bankruptcy prediction in Section 2 . We describe

how we construct our samples in Section 3 . We introduce deep

learning models and compare our model architectures along with

several other data mining benchmarks in Section 4 . We report

and discuss the model evaluation results in Section 5 . We offer
 c  
ome concluding remarks and discuss future research directions in

ection 6 . 

. Literature review 

When predicting corporate bankruptcy, researchers have rou-

inely used accounting-based variables (e.g., profitability ratio and

iability ratios) and market-based variables (e.g., stock market re-

urns and volatility) as a gauge of default risk. We refer readers to

umar and Ravi (2007) and Demyanyk and Hasan (2010) that pro-

ide comprehensive literature reviews on the studies before 2008.

n Table 1 , we curate a list of more recent studies on bankruptcy

rediction. We summarize each study based on the sample selec-

ion criteria, source of database and countries, sample size, time

eriod, models used, and variable types. We now highlight several

hemes that emerge from the table. 

First, the methods used by recent studies align with the two

ajor categories featured in Kumar and Ravi (2007) ’s review: sta-

istical models and intelligent models. The first category of re-

earch continues to focus on statistical properties of the model

e.g., Campbell et al., 2008, Ding et al., 2012 ). Recent studies focus

n developing statistical models to improve the model’s prediction

ccuracy and provide more insights in examining distress risk. For

xample, researchers can identify the most relevant features and

heir relative weights using statistical models in bankruptcy pre-

iction. Such identification can help test bankruptcy theories and

uide regulations in credit markets. Popular models include dis-

riminant analysis, logistic regression models, and factor analysis. 

Most of the studies in Table 1 fall into the intelligent category.

he goal is to develop more accurate models using artificial intel-

igence and operations research techniques. In contrast with the

tatistical studies, the intelligent techniques make fewer assump-

ions about the data. Also, models that allow non-linear decision

oundaries (e.g., neural networks, SVM with non-linear kernels)

uickly gained popularity and are now widely applied. These fea-

ures provide better model flexibility and improved classification

erformance. A trend in recent literature is studying the combina-

ions of models. A number of studies demonstrate how to combine

arious models horizontally using ensemble techniques (e.g., Geng

t al., 2015, Kim & Kang, 2010 ), or vertically (e.g., du Jardin, 2016 ).

hese hybrid models can capture more variations in the decision

pace and result in more stable and accurate predictions. 

Second, we notice a wide diversification of data sources in re-

ent studies. As noted before, theoretical and empirical studies

ave long established that accounting-based ratios and market-

ased variables are the main indicators of future bankruptcy.

ore recent studies have started to evaluate the predictive power

f data sources beyond the two types of variables. For exam-

le, Liang, Lu, Tsai, and Shih (2016) examine the discriminatory

ower of a broad array of corporate governance indicators, in-

luding board structure, ownership structure, leadership person-

el, and others. Doumpos, Andriosopoulos, Galariotis, Makridou,

nd Zopounidis (2017) ’s model takes country characteristics into

ccount. They show that country-level data on the economic and

usiness environment, energy efficiency policies, as well as char-

cteristics of markets can add value to corporate failure prediction

odels. Calabrese, Degl’Innocenti, and Osmetti (2017) study how

he U.S. government’s Troubled Asset Relief Program (TARP) im-

acted the probability of failure among commercial banks. Exam-

ning the effectiveness of these new data sources can expand the

cope of features selections for prediction models and offer policy

rescriptions. 

Our study extends the bankruptcy prediction literature in two

ajor ways. We examine the predictive power of a new form of

ata — firm’s textual disclosure in annual reports. Despite its wide

irculation and being designed as a leading indicator of future
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Table 1 

Recent studies on bankruptcy prediction. 

Study Industry Source of data/country Sample size Models 

Time 

period 

Variables 

type 

Premachandra, Bhabra, and 

Sueyoshi (2009) 

Firms USA, Compustat, CRSP 200 DEA, logit 1991–2004 Accounting, 

market 

Psillaki, Tsolas, and Margaritis 

(2010) 

Firms, textiles; wood 

and paper products; 

computer activities and 

R&D 

France, Bureau van Dijk 

– Diane 

5751 DEA + logit 20 0 0–20 04 Measure of 

efficiency, 

accounting 

Sueyoshi and Goto (2009) Firms, construction Japanese construction 

industry 

1091 DEA-DA, PCA 20 0 0–20 05 Accounting 

Li and Sun (2009) Firms China, specially treated 

(ST) 

162 Electre-CBR-I, Electre-CBR-II, 

ANOVA feature selection 

20 0 0–20 05 Accounting 

Geng et al. (2015) Firms China, CSMAR 214 NN, DT, SVM, MV 20 01–20 08 Accounting 

Wanke et al. (2015) Banks Brazilian, Economatica 640 DEA + DSBM 1996–2011 

du Jardin (2015) Firms, retail, 

construction, services 

France, Bureau van Dijk 

– Diane database 

18,620 DA, logit, MLP, SA 2003–2012 Accounting 

du Jardin (2016) Firms France, Bureau van Dijk 

– Diane database 

17,660 Bagging, boosting, random 

subspace, PBM 

2003–2012 Accounting 

Doumpos et al. (2017) Firms, energy 18 EU countries, Bureau 

van Dijk, Eurostat, IEA, 

OECD, and UNECE 

138,387 MCDA 2012–2016 Accounting, 

Macroeco- 

nomic, 

energy 

markets 

Liang et al. (2016) Firms, manufacturing, 

service 

Taiwan Economic 

Journal (TEJ) 

478 SVM, KNN, NB, CART, MLP 1999–2009 Accounting, 

market, 

corporate 

governance 

Calabrese et al. (2017) Banks U.S. Department of the 

Treasury, FDIC, Call 

Reports 

LOBGEV(GEV model and D -vine 

copula) 

2008–2013 Combination 

of variables 

Olson, Delen, and Meng (2012) Firms USA, Compustat 1321 DT, logit, MLP, RBFN, SVM 20 05–20 09 Accounting 

Serrano-Cinca and 

GutiéRrez-Nieto (2013) 

Banks USA, FDIC 8293 PLS-DA 2008–2011 Accounting 

Ioannidis, Pasiouras, and 

Zopounidis (2010) 

Banks 78 countries, 

Bankscope, World Bank 

944 UTADIS, MLP, CART, KNN, 

Ordered logit, stacked models 

20 07–20 08 Accounting, 

country-level 

variables 

Boyacioglu, Kara, and Baykan 

(2009) 

Banks Turkey, Banks 

Association of Turkey 

76 NN, SVM, MDA, K-means 

cluster analysis, logit 

1997–2004 Accounting 

Cecchini et al. (2010) Firms USA, Compustat, CRSP 156 SVM 1994–1999 MD&A, 

Altman 

variables 

Chauhan, Ravi, and Chandra 

(2009) 

Banks Turkey, Spanish, US 129 DEWNN: Differential 

evolution + Wavelet NN, 

TAWNN, WNN 

1975–1985 Accounting 

Etemadi, Rostamy, and 

Dehkordi (2009) 

Firms Iran, Tehran stock 

exchange 

144 GP, MDA 1998–2005 Accounting 

Kim and Kang (2010) Firms Korea 1458 MLP + bagging, MLP + boosting 20 02–20 05 Accounting 

Yeh, Chi, and Hsu (2010) Firms, information and 

electronic 

manufacturing 

Taiwan Stock Exchange 114 DEA + Rough sets + SVM 20 05–20 07 Accounting, 

efficiency 

M.-Y. Chen (2011) Firms Taiwan Stock Exchange 100 PCA, DT, logit 20 0 0–20 07 Accounting 

De Andrés et al. (2011) Firms, manufacturing Spain, bureau van Dijk 

and Informa 

59,474 Fuzzy clustering + MARS 20 07–20 08 Accounting (5 

Altman 

variables) 

Li, Sun, and Sun (2009) Firms China ST 270 CBR based on outranking 

relations 

20 0 0–20 05 Accounting 

Huang et al. (2008) Firms Taiwan, TEJ 820 Financial analysis model + MLP 20 01–20 04 Accounting 

Campbell et al. (2008) Firms USA, Compustat, CRSP 1m + Discrete Hazard Model 1963–2003 Accounting & 

Market 

Chandra et al. (2009) Non-Financial Firms USA, Compustat, CRSP 16,816 

1.9m + 

MLP, CART, logit, Random 

Forest, SVM, ensemble, 

boosting 

1962–1999 Accounting & 

Market 

Tian et al. (2015) Firms USA, Compustat, CRSP 1.5m + Discrete Hazard Model, Logit 1980–2009 Accounting & 

Market 

Ding et al. (2012) Firms USA, Compustat, CRSP 1m + Transformation Survival Model 1981–2006 Accounting & 

Market 

Chen et al. (2011) Firms, small or 

medium size 

France, Diane database 1200 GA + LVQ 20 06–20 07 Accounting 

Sánchez-Lasheras et al. (2012) Firms, construction Spain, Bureau van Dijk 63,107 SOM + MARS 20 07–20 08 Accounting (5 

Altman 

variables) 
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t  
performance, the predictive power of such textual data cannot be

automatically assumed. This is because the Securities Exchange

Commission (SEC) grants firms considerable flexibility and encour-

aged firms to experiment with formats of conveying information

( Bryan, 1997 ). Management may have incentives to hide bearish in-

formation or to use vague language in their disclosure. In addition,

effective predictive models based on textual data require rethink-

ing the entire modeling process; we cannot simply “plug-in” the

inputs to existing data mining and operations research techniques.

While two prior studies ( Cecchini, Aytug, Koehler, & Pathak, 2010;

Mayew, Sethuraman, & Venkatachalam, 2015 ) have reported that

MD&A can discriminate bankrupted and non-bankrupted firms,

Cecchini et al. (2010) explored only a small, static sample (156

firms), and Mayew et al. (2015) used manual coding. To this end,

we fill the gap by systematically studying bankruptcy prediction

modeling using large-scale textual data and compare the perfor-

mance with models that use numerical data. We propose new in-

telligent prediction models based on deep learning; we also eval-

uate how existing data mining methods can be adapted for such

task. 

Our study is also relevant to a strand of literature that stud-

ies the role of qualitative variables in credit scoring models. The

qualitative information is considered as soft facts whereas the tra-

ditional numerical information such as market information or ac-

counting data is considered as hard facts ( Lehmann, 2003 ). Re-

cently, researchers started to apply text analysis methods to pro-

cess loan descriptions and incorporate the soft information such

as analysts’ subjective evaluations in the model ( Agarwal, Chen,

& Zhang, 2016; Dorfleitner et al. 2016 ). Yet, among those existing

models, most models only rely on descriptive statistics from the

documents such as length, spelling errors, or tones. Our model is

different from these studies. In particular, we propose an end-to-

end machine-learning model, in which the learning algorithm goes

directly from the raw textual input to the prediction. Our model

attempts to incorporate all relevant information in the text for pre-

diction. 

Finally, although artificial neural network is a common tech-

nique in prior studies, the effectiveness of several deep learning

techniques such as Word Embedding ( Mikolov, Sutskever, Chen,

Corrado, & Dean, 2013 ) and Convolutional Neural Network (CNN)

( Krizhevsky, Sutskever, & Hinton, 2012 ) have not been evaluated.

These new neural network models are cornerstones of the recent

development of deep learning. They drive some of the impressive

breakthrough results in many areas of AI by automatically finding

high-level representations from textual and image data ( Le Cun et

al., 2015 ). We evaluate whether, and which deep learning architec-

tures can enhance the model performance. That is, we identify the

optimal way to combine different neural network layers. 

3. Data 

We construct our bankruptcy database by merging three data

sources: accounting data from Compustat North America, equity

trading data from Center for Research in Security Prices (CRSP),

and textual disclosure data from10-K annual filings to the Securi-

ties Exchange Commission (SEC). Our primary sample includes all

the publicly traded firms from 1994 to 2014. In total, our database

includes 11,827 firms and 94,994 firm-years with no missing ob-

servations. Table 2 summarizes the yearly distribution of firms. 

3.1. Bankruptcy indicator 

To build a prediction model, we need to construct a bankruptcy

indicator as the binary response variable. We define a company as

a bankruptcy case if the company files for either Chapter 7 (liqui-

dation) or Chapter 11 (reorganization) bankruptcy protection code.
n particular, the bankruptcy indicator for firm i at time t is set

o one if the firm was delisted due to either Chapter 7 or Chapter

1 filing at time t . There are very few cases that firms who were

elisted may re-enter the database later, but we do not consider

ny firm-year observation after their first delisting in our analy-

is. Conversely, the bankruptcy indicator is set to zero if the firm

ither (1) stayed or survived in the database through the end of

he sampling period or (2) exited from the database due to other

easons such as mergers and acquisitions. As a result, we identify

 total of 477 bankruptcy filings over the 1994 to 2014 sampling

eriod. Fig. 1 shows the distribution of bankruptcy probability for

ach year. The three peaks of the bankruptcy events match with

he recessions following the 1997 Asian financial crisis, the burst

f the Dot-com bubble in the early 20 0 0s, and the more recent

ubprime mortgage crisis. 

For the set of explanatory variables, we construct a time-

arying panel dataset, consistent with Shumway (2001) ’s work.

ach firm-year in our sample period is a separate observation. It

ontains all the predictor variables we used in this study and a bi-

ary response variable, which indicates the firm’s bankruptcy sta-

us one-year later. For other prediction horizons such as two-year

r three-year, we adjust the firm-year observation by matching the

redictor variables with its bankruptcy status after two years or

hree years. We eliminate the firm-year observations when the gap

etween the predictor variables and the response variables is dif-

erent from the corresponding prediction horizon. The main advan-

age of such panel data structure is that all the historical infor-

ation of a company is used in forecasting future bankruptcy. It

ay provide more consistent and accurate out-of-sample predic-

ion when compared with the static model where only one year is

elected to observe a firm’s characteristics ( Shumway, 2001 ). 

.2. Numerical predictors 

For numeric input data, we compile a comprehensive list of

6 predictor variables based on the literature review on the

ankruptcy of U.S. firms ( Table 3 ). When predicting the probability

f bankruptcy, it is common to consider the accounting informa-

ion and up-to-date market information that may reflect the com-

any’s liability, liquidity, and profitability status. For this purpose,

any studies in bankruptcy prediction have proposed relevant

ccounting-based and market-based predictor variables, for exam-

le, Altman (1968); Beaver (1966); Campbell et al. (2008) and Tian

t al. (2015) . In our study, all variables are obtained by merging

nnual accounting data from Compustat North America with daily

nd monthly equity data from CRSP. To construct the accounting-

ased predictor variables, we first align the firm’s fiscal year appro-

riately with the calendar year. Companies usually report their ac-

ounting data with a delay. To ensure that the accounting informa-

ion we used is observable to the investors at the time of predic-

ion, we further lag all the accounting items by four months. Based

n the carefully aligned calendar time, we add the corresponding

onthly market-based predictor variables to the accounting-based

redictor variables. We provide details of how to construct each

ariable using CRSP and Compustat database in the Appendix. To

void any recording errors or outliers, we further winsorize all the

umerical predictor variables at its 1% and 99% by replacing values

hat are lower than 1% with its first percentile and higher than the

9% with its ninety-ninth percentile. 

.3. Textual predictors 

A key innovation of our study is that we consider an untapped

extual data source — Form 10-K to forecast financial distress. The
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Table 2 

Firm distribution by year. 

Year Total Firms Bankrupted Firms Year Total Firms Bankrupted Firms 

1994 1783 6 2005 4475 5 

1995 3334 22 2006 4451 10 

1996 6117 52 2007 4417 38 

1997 6183 52 2008 4209 48 

1998 5989 57 2009 4036 16 

1999 5846 22 2010 3930 12 

20 0 0 5567 18 2011 3841 7 

2001 5158 36 2012 3799 8 

2002 4857 30 2013 3865 8 

2003 4579 14 2014 4019 3 

2004 4539 13 

Fig. 1. Rate of bankruptcy in the sample firms (1994–2014). 

Table 3 

Description of numeric variables. 

Variable Description Variable Description 

ACTLCT Current Assets/Current Liabilities LTMTA Total Liabilities/(Market Equity + Total Liabilities) 

APSALE Accounts Payable/Sales LOG(AT) Log(Total Assets) 

CASHAT Cash and Short-term Investment/Total Assets LOG(SALE) Log(Sale) 

CASHMTA Cash and Short-term Investment/(Market Equity + Total Liabilities) MB Market-to-Book Ratio 

CHAT Cash/Total Assets NIAT Net Income/Total Asset 

CHLCT Cash/Current Liabilities NIMTA Net Income/(Market Equity + Total Liabilities) 

(EBIT + DP)/AT (Earnings before Interest and Tax + Amortization and Depreciation)/Total Asset NISALE Net Income/Sales 

EBITAT Earnings before Interest and Tax/Total Asset OIADPAT Operating Income/Total Asset 

EBITSALE Earnings before Interest and Tax/Sales OIADPSALE Operating Income/Sales 

EXCESS RETURN Excess Return Over S&P 500 Index PRICE Log(Price) 

FAT Total Debts/Total Assets QALCT Quick Assets/Current Liabilities 

INVCHINVT Growth of Inventories /Inventories REAT Retained Earnings/Total Asset 

INVTSALE Inventories/Sales RELCT Retained Earnings/Current Liabilities 

(LCT-CH)/AT (Current Liabilities – Cash)/Total Asset RSIZE Log(Market Capitalization) 

LCTAT Current Liabilities/Total Asset SALEAT Sales/Total Assets 

LCTLT Current Liabilities/Total Liabilities SEQAT Equity/Total Asset 

LCTSALE Current Liabilities/Sales SIGMA Stock Volatility 

LTAT Total Liabilities/Total Assets WCAPAT Working Capital/Total Assets 

Note : The table provides the description of the 36 numerical bankruptcy predictors. 
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.S. SEC requires all public firms to file 10-K 

1 at the end of each

scal year. Our prediction models focus on the Management Dis-

ussion and Analysis (MD&A) section of 10-K. Since 1980, the SEC

andates public companies to include an MD&A section in the an-

ual report. The section contains a narrative explanation of the
1 A complete 10-K consists of fourteen Items that provide a comprehensive sum- 

ary of a company’s business in the previous year. Common items include business 

escription, financial performance, organization structure, executive compensation, 

quity, among others. 

 

 

 

rm’s operations in a way that an average investor can understand.

he rationale, according to SEC 

2 , is that 

“… a numerical presentation and brief accompanying footnotes

may be insufficient for an investor to judge the quality of earn-

ings and the likelihood that past performance is indicative of

future performance. MD&A is intended to give the investor

an opportunity to look at the company through the eyes of
2 Securities Act Release No. 6711. 
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management by providing both a short and long-term analysis

of the business of the company.”

The statement makes it clear that the SEC intends MD&A to

serve as a qualitative disclosure for investors to make more accu-

rate projections of future financial and operating results. Although

studies in accounting and finance have conducted content analyses

of MD&A (see for example Cole & Jones, 20 05; Li, 20 08; Loughran

& McDonald, 2011 ), most focus on extracting the tone and read-

ability of the section. These correlational studies do not resolve

how, if at all, we can use this qualitative section for corporate

bankruptcy prediction. In other words, can algorithms understand

this section as the SEC intends investor to do? 

We download all 10-K forms and its variants 10-K405, 10KSB,

and 10KSB40 forms from the SEC Electronic Data Gathering, Anal-

ysis, and Retrieval (EDGAR) system. We link 10-K forms to CRSP

and Compustat database. Firms with missing links are excluded

from the analysis. The firms with missing links are real estate, non-

operating, or asset-backed partnerships or trusts ( Loughran & Mc-

Donald, 2011 ). For each linked 10-K filing, we remove the HTML

tags, tables, and exhibits. We then extract the MD&A section us-

ing Perl scripts. This section usually appears as Item 7, but some-

times also appears in the annual shareholder letters attached at

the end of 10-K. We consider both cases. For our study, we ex-

clude all empty MD&A sections and those with fewer than 10 0 0

characters. 

4. Model 

4.1. Overview and text pre-processing 

Predictive models based on textual data pose challenges to the

modeling process for several reasons. First, textual data are natural

languages; they cannot be directly used as inputs in many mathe-

matical models. We need to use natural language processing (NLP)

to transform the textual data into numerical units that a math-

ematical model can understand. Second, typical textual databases

are much greater in size compared to numerical datasets. There-

fore, information extraction, which locates the most relevant pieces

of information, becomes a crucial step in the modeling process.

Third, coping with the ‘curse of dimensionality’ and using effec-

tive feature selection to overcome the curse is ever more crucial

when using textual data as model inputs. The simplest text model

is ‘bag of words,’ which treats each unique word as a feature; it

can increase the number of variables to over tens of thousands

(the size of vocabulary). Fourth, feature selection is compounded

by the problem of synonymy in natural language. In our context,

there are many ways for firms to convey that they are doing well

or in trouble. For prediction models to be generalizable, we need

to make use of the semantic rather than the syntactic of the text.

In other words, a good model should understand the meaning of

words. 

With these challenges in mind, we now describe our model-

ing process. Fig. 2 summarizes our analysis procedure, including

the database construction, data processing, feature extraction, and

model training and evaluation. The flowchart’s left branch shows

how we analyze the numerical data following standard procedure

in prior literature. We focus on how we process and analyze the

text data (the right branch). 

In the data processing stage, we transform the raw MD&A sec-

tion from 10-K annual filings to clean plain-text documents in

three steps: (1) We tokenize each MD&A section into individual

words using the Natural Language Toolkit (NLTK) ( Bird, Bird, &

Loper, 2016 ); (2) We also use NLTK to lemmatize each word and

remove the inflectional forms of words and return them to basic

forms. For instance, paid and paying become pay ; ( 3 ) We remove
he low-frequency words and only include 20,0 0 0 most frequent

ords. Such filtering procedure is a common practice in natural

anguage processing as it can help reduce the dimensionality of

ownstream statistical models. 

The next stage, feature (variable) extraction, converts unstruc-

ured text to numerical representations. This stage is where tra-

itional intelligent models and deep learning models diverge. We

herefore combine the discussion of feature extraction with the

escription of models. Section 4.2 presents the model for textual

ata. We first describe how we use word embedding, a new deep

earning layer for textual data, to extract meaning from the texts

nd turn words into real-valued vectors. Next, our model uses

he outputs from the word embedding layer as inputs to gener-

te bankruptcy predictions. We compare two deep learning model

rchitectures: average embedding model and convolutional neural

etwork. In Section 4.3 , we briefly describe deep learning models

or numerical data. Section 4.4 covers the implementation of the

eep learning models. In Section 4.5 , we show how traditional data

ining models handle text features and describe these benchmark

odels. 

.2. Deep learning architectures for text 

.2.1. Word embedding 

As noted earlier, a fundamental challenge in using natural lan-

uage as predictors of future events is to understand the underly-

ng semantics. This is because any word can have many synonyms;

here are also infinite possible combinations of words that can ex-

ress the same meaning. A model that focuses on learning the syn-

actic of language needs to deal with the large amount variations,

ach with its own parameter. A “bag-of-words” model is an ex-

mple, in which case the discriminant power of each word in the

ocabulary is computed. Such model often suffers from the ‘curse

f dimensionality’ and runs the risks of being not generalizable. As

he dimensionality (number of words in the vocabulary) increases,

he amount of data required for the model to have acceptable vari-

nce (a component of predictive error) increases rapidly ( Stone,

985 ). 

In this research, we make an important methodological ad-

ancement over the extant methods of using text to predict finan-

ial events. We start with the word embedding model ( Mikolov et

l., 2013 , aka word2vec), which is among the hallmarks of the re-

ent development of deep learning. It is based on a simple and

ld idea in linguistic: words with similar meanings tend to oc-

ur with similar neighbors. To operationalize this idea, the embed-

ing model summarizes the contextual information of each word

y predicting its surrounding context words using neural networks.

he features used for such prediction are in a lower-dimensional

ector space (the embedding space) that preserves as many prop-

rties of the original data as possible. For each word, the estimated

oefficients for its features can represent the semantics of the word

ell. We can then represent the meaning of a word using a real-

alued vector. As a result, the dimensionality of the textual model

an be reduced significantly: from the size of the vocabulary to the

imension of the word vector. 

Specifically, we adopt the skip-gram model ( Mikolov et al.,

013 b) to calculate the word embedding vectors. Our goal is to

epresent a word w using a d dimensional vector v w 

. To achieve

his, the skip-gram model first seeks to predict each word’s sur-

ounding words by maximizing the log probability: 

1 

| V | 
| V | ∑ 

t=1 

∑ 

−k ≤ j ≤k, j � =0 

log p( w t+ j | w t ) (1)

here k is the “window size” of the context (for demonstration

urpose, we let k = 5), w t is a word at location t , | V | is the size
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Fig. 2. Flow chart of analysis. 
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f the vocabulary. To train this prediction model, note that each

ord can be naturally represented using a | V | dimensional one-hot

ow vector 3 . A single-hidden-layer neural network, parameterized

y a | V | × d weight matrix W , first projects 4 a word w to a vec-

or v w 

in 

d , where v w 

is simply the corresponding row in W . The

etwork’s output softmax layer, parameterized by a second d × | V |
eight matrix W 

′ , uses the v w 

as the input to predict the prob-

bility of observing each context word c in the context of w . The

orresponding column in W 

′ is denoted as v c . That is: 

p ( c| w ) = 

exp 

(
v T c v w 

)
∑ 

c ′ ∈ C exp 

(
v T 

c ′ v w 

) (2) 

Putting it together, the log-likelihood of the entire model is

omputed by summing over all ( w, c ) combinations: 

rg max 
W, W 

′ 

∏ 

w ∈ V 

∏ 

c∈ c ( w ) 

p 
(
c| w ; W, W 

′ )

= arg max 
W, W 

′ 

∑ 

All ( w,c ) 

log p 
(
c| w ;W, W 

′ ). (3) 

In (3) , c ∈ c(w ) is the set of all contexts for word w . The learn-

ng of word vectors v w 

s is achieved when the log-likelihood is

aximized. 

A naïve estimation using iterative optimization techniques on

he neural networks can be computationally impractical for a large
3 A one-hot vector is a vector with a single 1 and the others 0. Since there are | V | 
nique words, each word can be represented using a one-hot vector with a unique 

ntry being 1. 
4 A one-hot row vector with the w th entry being 1 multiplying W outputs the 

 th row of W . 

s  

 

t  

n  

b  

t  
ollection of texts. We use an efficient approximation algorithm

or the skip-gram model, known as negative sampling ( Gutmann

nd Hyvärinen, 2012 ). It trains high-quality models without using

ny dense matrix multiplications. The difficulty of solving the word

mbedding model using an iterative optimization procedure lies in

he computation of ∇p( c| w ;W, W 

′ ) from Eq. (3) due to the size

f all the contexts C. Note that log p(c| w ;W, W 

′ ) in Eq. (3) can be

ritten as 

og p 
(
c| w ;W, W 

′ ) = log 
exp 

(
v T c v w 

)
∑ 

c ′ ∈ C exp 

(
v T 

c ′ v w 

)

= log exp 

(
v T c v w 

)
− log 

∑ 

c ′ ∈ C 
exp 

(
v T c ′ v w 

)
. (4) 

Negative sampling replaces ( 4 ) using the expression 

log 
1 

1 + exp 

(
−v T c v w 

) + 

n ∑ 

i =1 

log 
1 

1 + exp 

(
v T 

c ′ 
i 

v w 

) (5) 

here c ′ 
i 
s are n negative samples, i.e., the words that never appear

n the contexts of w, randomly generated from a “noise distribu-

ion”. The idea is that if the model is trained correctly, it should

e good at distinguishing correct ( w, c ) pairs (which we can ob-

erve from review data) from the randomly generated ( w, c ′ 
i 
) pairs.

Given a vectorized presentation of each word, we effectively

ransform each document to a matrix of n × d document, where

 is the document length. In practice, each MD&A document varies

y length. We normalize each document to length n = 7500 by

runcating longer documents and adding vectors of 0 ′ s to shorter
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Fig. 3. Deep learning architectures. 
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documents. Such operation, called padding , is needed because the

tensor (i.e., data represented as multi-dimensional arrays) used

for neural network training must consist of matrices of the same

dimension. 

Thus far, firms’ outcomes (bankruptcy or not) are not needed

for the training of the embedding model. A key design decision in

creating our deep learning system is defining its subsequent net-

work architecture, or how the various processing layers can be

added to the word embeddings to reach a prediction. We now

compare two deep learning architectures that take pre-trained

word embedding based on MD&A corpus as input features. The

first is the average embedding model, and the second is a Con-

volutional neural network (CNN). 

4.2.2. Average embedding model 

Fig. 3 (a) illustrates the average embedding model. Intuitively,

we can view the average embedding model as identifying the most

important latent themes (each as a dimension in the word vec-

tor) that can predict future bankruptcy. As its name suggests, this

simple model architecture takes the average of every word vec-

tor dimension for all the word in a document. That is, the model
alculates the mean of each column of the n × d document matrix

nd represents each document using a d -dimensional vector. Then,

wo layers of hidden neurons with rectified linear unit (ReLU) ac-

ivation function are added. ReLU is defined as f (x ) = max ( 0 , x ) .

ompared to conventionally used sigmoid neurons in bankruptcy

rediction literature, ReLU layer is advantageous in that it can help

rain models faster and may yield better performance on unstruc-

ured data ( Glorot, Bordes, & Bengio, 2011 ). Finally, a sigmoid out-

ut unit is added to classify the binary outcome. 

.2.3. Convolutional neural network 

The convolutional neural network (CNN) architecture, shown in

ig. 3 (b), is a variant of the model proposed by Kim (2014) . The

dea behind CNN is that it can train m convolving filters to detect

ocal features. In our context, these features can be key phrases

n MD&A that are helpful for bankruptcy prediction. The bag-of-

ords models in conventional methods, as we describe later in

ection 4.3 , are similar in a sense that they also assign higher

eights to the most important words. However, a key difference

ere is that we apply CNN on the outputs of the embedding

odel. Thanks to the embedding model, semantically close phrases
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e.g., growth and gain ) can share parameters in the lower dimen-

ional vector space and lead to more generalizable models. 

In a CNN, we define a filter B f as a matrix B f ∈ R 

h ×d . When

he filter applies a convolution operation to a phrase of length h

tarting at the t- th word, it outputs a scalar: 

 t = ReLU ( B f · W t : t + h −1 + b 0 ) . (6) 

The W t : t + h −1 matrix is the consecutive subset of rows from

ord vector t to word vector t + h- 1 in the n × d embedding matrix

f a document. We use · to denote the sum of the element-wise

roduct of two matrices, and b 0 ∈ R is a bias parameter (intercept).

eLU is the aforementioned activation function. If we treat each fil- 

er as a key phrase detector, we can view the output scalar c t as

he extent the t- th word to ( t + h- 1)th word is semantically close to

he phrase that the filter is trying to detect. In other words, each

lter is trained to look for a set of predictive phrases that have

imilar meanings. 

In our CNN architecture, we use 100 filters on our MD&A

ataset. Since each filter is applied to every h = 3 consecutive word

ectors, the convolution layer generates 100 n -dimensional feature

ap vectors, where n is the document length. When predicting the

utcome of a firm, we are more interested in whether, rather than

here, a key phrase occurs in the document. Hence, we apply a

ax pooling operation by taking the maximum value of each fea-

ure map vector, resulting in a 100-dimensional vector output. Fi-

ally, two layers of hidden neurons with ReLU activation function

ollowed by a sigmoid output unit are added to classify the binary

utcome. 

.3. Models for numerical data 

Neural network has been a popular method for bankruptcy pre-

iction using numerical data. We refer readers to Wong and Selvi

1998), Zhang et al. (1999) and the relevant studies in Table 1 for

 review. We test three different models for benchmarking. The in-

uts of the models are variables from Table 3 . In DL-1 Layer model,

e add a single hidden layer of 4 neurons. In the DL-Deep model,

e stack 4 layers of hidden units in the network, each layer consti-

uting 4 neurons. The DL-Wide model constitutes a single hidden

ayer of 16 neurons. Such choice of these hidden parameters used

n our model are consistent to the similar studies such as Lacher,

oats, Sharma, and Fant (1995) and Lee et al. (1996) . 

.4. Model implementation 

We implement our models using the Keras 2.0 package with

ensorFlow backend. Our deep learning system is a feedforward

odel that maps inputs (numeric and text features) to a binary

utput (bankruptcy or not). Therefore, we use backpropagation al-

orithms to train the model. We use the cross-entropy as the loss

unction. Since the full training set is too large to fit in the mem-

ry, we use stochastic gradient descent (SGD) with the Adam up-

ate rule ( Kingma & Ba, 2015 ). Because the objective function can

e decomposed as a sum of subfunctions evaluated at different

ubsamples of data, SGD updates the parameters using only a sub-

et (batch) of the training examples at a time. For each batch, all

he word vectors, weight matrices, and bias vectors are updated.

ence, SGD is a much more efficient optimization method than

tandard backpropagation. We use a batch size of 32, and our mod-

ls take less than 10 passes of the entire training sample (epochs)

o train. 

We employ three measures to prevent overfitting. First, we add

2 regularization to penalize the weights in the neural network 5 .
5 All regularization hyperparameters are chosen based on cross-validation perfor- 

ance of the training set. 

f  

s  

a  

t

n addition, we use the dropout technique ( Srivastava, Hinton,

rizhevsky, Sutskever, & Salakhutdinov, 2014 ) by randomly omit-

ing a subset of hidden units at each iteration of a training pro-

edure. Lastly, we use early stopping ( Bengio, 2012 ) by monitor-

ng the validation set performance during the training and halt the

raining early when the performance stops improving. 

.5. Other benchmark models 

.5.1. Feature extraction 

We now describe how we extract features for three benchmark

ata mining models: logistic regression, random forest, and sup-

ort vector machine. For these models, the feature extraction for

extual data starts with constructing the document-term matrix

DTM). We construct a DTM by converting each MD&A document

s a single row in the matrix, and each of the top 20,0 0 0 words in

he whole corpus is a column. Each entry in the DTM is the term-

requency (TF), which is the number of times a word (term) ap-

ears in a document. Using TF weights to represent the content of

ocuments has a clear drawback: it grants high weights to words

hat are frequent across the board but lacks discriminative power.

or instance, content-free words ( a, the, and ) and generic words

 finance, firm, report ) are usually not helpful in predicting the out-

ome of the firms. Therefore, to prioritize the important words

pecific to each MD&A document, we compute the term frequency-

nverse document frequency (TF-IDF) for each word in each doc-

ment. If a term t j occurred in n j of the N total documents, its

F-IDF weight in document i is calculated as 

DF 
(
t j 
)

= − log 

(
n j 

N 

)
, (7) 

T F ( t i j ) = Number of times t j appers in document i, 

 F − IDF 
(
t i j 

)
= T F 

(
t i j 

)
× IDF 

(
t j 
)
. 

In other words, TF-IDF downweights a term’s TF according to

ow frequently the term appears in the entire dataset. For the fol-

owing benchmark models, each MD&A document is represented

s a 20,0 0 0-dimensional TF-IDF weights vector. 

.5.2. Logistic regression 

Logistic regression is one of the most popular prediction mod-

ls in bankruptcy literature. The model assumes a logit link be-

ween the explanatory variables and the dichotomy default event.

he model can be expressed as 

 ( Y i , t+1 = 1 | Y i,t−1 = 0 , X i,t ) = 

e β0 + β ′ 
1 X i,t 

1 + e β0 + β ′ 
1 
X i,t 

(8) 

here X i,t is a covariate vector of time-varying firm-specific ex-

lanatory variables at time t , β is a vector of covariate effect pa-

ameters and β0 is a scalar parameter. Mathematically, the logistic

egression estimated using our sample is equivalent to a discrete

azard model ( Shumway, 2001 ). We add an L1 penalty on the co-

fficients to prevent overfitting. 

.5.3. Random forest 

Random forest ( Schapire, Breiman, & Schapire, 2001 ) is a ma-

hine learning technique for both classification and regression. It

s a variant of the Bagging ( Breiman, 1996 ) ensemble learning

ethod. For our classification problem, random forest constructs

any decision tree classifiers trained on bootstrap replicates of

riginal samples by randomly choosing k independent variables.

he model outputs the classification class based on majority voting

rom the decision trees. Through randomization of both training

amples and feature space, random forest can improve the gener-

lization performance due to a reduction in variance while main-

aining or slightly increasing bias. 
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4.5.4. Support vector machine 

Support vector machine, developed by ( Vapnik & Vapnik, 1998 ),

has gained popularity in the bankruptcy prediction problem thanks

to its generalization ability and distribution-free property towards

underlying data set ( Chandra, Ravi, & Bose, 2009 ). Plus, SVM has

robust performance over a variety of text classification problems

( Joachims, 1998 ). Simply put, SVM is a generalized linear model

that finds an optimal hyperplane. The hyperplane maximizes the

margin between itself and the nearest training examples while en-

suring the accuracy of correct classification. The training examples

that are closest to the hyperplane are called support vectors. All

other examples are irrelevant for solving the classification problem.

The support vectors are determined by solving a quadratic pro-

gramming problem. For non-linear separable data, SVM uses non-

linear kernel functions (RBF in our case) to transform training data

to a higher dimensional feature space in which the data become

more separable. 

5. Empirical results 

5.1. Model evaluation 

It is crucial to choose a bankruptcy prediction model with an

accurate out-of-sample prediction power. Out-of-sample prediction

is also in line with the current BASEL III practice for default model

validation purpose. In this work, we split the data into training and

testing dataset and evaluate each model’s out-of-sample prediction

performance. We use two splitting method. First, we randomly par-

tition the dataset by selecting 80% of the data as the training data

set and the remaining 20% as the testing set. This method is com-

monly used in many of the previous research (e.g. Doumpos et al.,

2017, Geng et al., 2015 , du Jardin, 2016 ). Based on the nature of

the data, we also test our models’ performance by splitting the

observations prior to 2007 as the training data and observations

after 2008 as the testing data set. This method better resembles

the forecasting scenarios in practice, and thus allows us to con-

duct a real assessment of the forecasting ability. For both parti-

tioning methods, we report the model’s out-of-sample AUC (area

under the receiver operating characteristic curve), accuracy ratio,

and cumulative decile-ranking to measure each model’s prediction

ability. 

AUC is a popular measure of a model’s overall discriminatory

power ( Bradley, 1997 ). Because bankruptcy is a rare event, using

the classification accuracy to measure a model’s performance can

be misleading. This is because the classification accuracy score as-

sumes that type I and type II errors are equally costly. In reality,

the cost of false negatives is much heavier than that of false posi-

tives. Although it is possible to assign a higher cost to false neg-

atives (du Jardin, 2016 ), such cost structure is still context spe-

cific. Also, decision-makers are interested more than a dichoto-

mous bankruptcy prediction. In many contexts, the probability of

bankruptcy can be used to construct credit portfolios or deter-

mine interest rates of loans ( Hillegeist, Keating, Cram, & Lundst-

edt, 2004 ). Hence, AUC is a more flexible performance measure

because it is calculated from the Receiver Operating Characteris-

tic (ROC) curve. The ROC curve depicts the trade-off between the

false positive rate and the true positive rate as the decision cri-

terion (cutoff probability) varies. AUC, or the area under the ROC

curve, can be used to evaluate a model’s overall ability without as-

suming a relative cost structure. AUC score usually ranges from 0.5

to 1, with 0.5 indicating a baseline of random assignment of class

labels, and 1 suggesting a perfect classification. 

The accuracy ratio is another common gauge for corporate

bankruptcy model evaluation ( Engelmann, Hayden, & Tasche,

2003 ). It is calculated from the Cumulative Accuracy Profile

(CAP), a concept similar to the ROC curve. The CAP tallies the
ercentage of true bankrupt firms included if we choose a vary-

ng percentage of observations using the sorted predicted proba-

ilities generated by a model. In a baseline model that randomly

ssigns class labels, the CAP would be a straight line with slope

ne. The accuracy ratio of a prediction model is the difference in

he area between the CAP of the model and the CAP of the base-

ine model. It captures the performance improvement of a pre-

iction model compared with the baseline model. Ranging from

 to 1, higher accuracy ratio value indicates better classification

bility. 

In addition, we also report the cumulative decile-ranking table

n the testing dataset. We rank the company’s predicted probabili-

ies into deciles, where the top decile contains the companies with

igh default probability and the bottom decile contains firms with

ow default risk. The decile table is constructed by tabulating the

umulative percentage of actual bankruptcy firms in each decile. A

igh percentage in the high bankruptcy probability deciles implies

etter out-of-sample classification power. 

.2. One-year-ahead prediction performance 

.2.1. Prediction performance using textual data 

Table 4 summarizes the out-of-sample prediction results us-

ng only the MD&A section of 10-K as predictor variables. We

ompare two deep learning architectures for text data with the

hree benchmark models: a linear model (logistic regression) and

wo non-linear models (SVM and random forest). In Table 4 , DL-

mbedding is the average embedding model described in Section

.2.2, and DL-CNN is the convolutional neural network described

n Section 4.2.3. We first note that all the implemented models,

eep learning or not, can adequately use the textual information in

D&A for bankruptcy prediction. The AUC values are consistently

bove 0.7 (for a random model the AUC will be 0.5). Also, the top

eciles of the predicted probabilities include at least 25% of the

rue bankruptcies (for a random model the value will be 10%). 

Among the experimented models when we split the data ran-

omly (Panel A), the DL-Embedding model has shown noticeably

igher AUC value 0.784 compared to other models. The DL-CNN

odel performance is on par with the other benchmark mod-

ls such as logistic regression, SVM, and random forest model,

ith the AUC values ranging from 0.711 to 0.716. Similarly, DL-

mbedding is the only model with an accuracy ratio above 0.5.

ccording to the decile ranking table at the bottom of Table 4 ,

he DL-Embedding model can correctly predict 35.7% of future

ankruptcy filings in the top decile and 55.9% in the top quin-

ile (20%). When splitting the data by year, the DL-Embedding

odel also has the highest AUC value 0.760. The DL-CNN per-

ormed worse than the bench marking models in terms of AUC.

verall, Table 4 provides strong evidence that the average embed-

ing model is the better deep learning architecture for bankruptcy

rediction. 

To formally test the performance difference between the av-

rage embedding model and the benchmark methods, we use

he binomial test for algorithm comparison proposed by Salzberg

1997) . Specifically, we compare the example-wise performance

etween the DL-Embedding model and the best-performing bench-

ark model (Logistic regression). In our test set, we count the

umber of examples for which the two algorithms give different

esults and denote the number as n . We then define successes

 s ) as the number of times that DL-Embedding got right and ran-

om forest got wrong. Under the null hypothesis that two algo-

ithms have equal performance, we expect the probability of suc-

ess in the binomial distribution to be 0.5. Hence, the p -value

s equal to 
∑ n 

i = s 
n ! 

i !( n −i )! 
0 . 5 n . The binomial test result on the test

et performance formally confirms our findings shown in Table 4 .

ith textual data only using the MD&A section of 10-K reports as
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Table 4 

One-year ahead out-of-sample performance using 10-K text. 

Panel A: Random Split 

DL-Embedding DL-CNN Logistic Regression SVM Random Forest 

Accuracy ratio 0.568 0.428 0.434 0.422 0.433 

AUC 0.784 0.714 0.717 0.711 0.716 

1 0.357 0.250 0.297 0.297 0.321 

2 0.559 0.440 0.487 0.499 0.464 

3 0.714 0.559 0.594 0.570 0.595 

4 0.821 0.738 0.736 0.724 0.690 

5 0.881 0.809 0.807 0.795 0.833 

6–10 1 1 1 1 1 

Panel B: Split by Year 

DL-Embedding DL-CNN Logistic Regression SVM Random Forest 

Accuracy ratio 0.521 0.403 0.434 0.432 0.419 

AUC 0.760 0.701 0.717 0.716 0.710 

1 0.424 0.326 0.315 0.315 0.380 

2 0.565 0.478 0.457 0.457 0.489 

3 0.728 0.609 0.587 0.587 0.609 

4 0.783 0.685 0.685 0.685 0.696 

5 0.837 0.739 0.783 0.783 0.707 

6–10 1.0 0 0 1.0 0 0 1.0 0 0 1.0 0 0 1.0 0 0 

Note : The table reports the out-of-sample performance measures for the test set, including the accuracy ratio, 

AUC (area under the ROC curve), and the decile ranking. We use an 80-20 train-test split in Panel A and pre- 

20 07/post-20 08 splitting in Panel B. The predictors are the MD&A section of the 10 K filings. For the decile 

ranking, we sort firms in the testing sample equally into deciles based on their predicted default probabilities. 

The first decile (decile 1) contains firms with the highest predicted default probability, and the last five deciles 

(decile 6-10) include the firms with the lowest predicted default probability. We then tabulate the cumulative 

percentage of actual bankruptcy filings observed in each decile. 

Table 5 

One-year ahead out-of-sample performance using accounting and market data. 

Panel A: Random Split 

DL-1 Layer DL-Deep DL-Wide Logistic Regression SVM Random Forest 

Accuracy Ratio 0.633 0.603 0.597 0.616 0.619 0.636 

AUC (%) 0.817 0.802 0.798 0.808 0.810 0.818 

1 0.405 0.345 0.238 0.369 0.429 0.393 

2 0.655 0.547 0.559 0.583 0.643 0.679 

3 0.798 0.785 0.797 0.809 0.798 0.810 

4 0.917 0.880 0.916 0.892 0.858 0.846 

5 0.953 0.963 0.952 0.952 0.941 0.929 

6–10 1 1 1 1 1 1 

Panel B: Split by Year 

DL-1 Layer DL-Deep DL-Wide Logistic Regression SVM Random Forest 

Accuracy Ratio 0.614 0.554 0.623 0.542 0.602 0.629 

AUC (%) 0.807 0.777 0.811 0.771 0.801 0.814 

1 0.587 0.413 0.457 0.467 0.533 0.467 

2 0.717 0.576 0.707 0.685 0.750 0.728 

3 0.804 0.837 0.804 0.750 0.783 0.783 

4 0.848 0.891 0.870 0.804 0.815 0.815 

5 0.880 0.935 0.891 0.859 0.870 0.826 

6–10 1 1 1 1 1 1 

Note : The table reports the out-of-sample performance measures for the test set, including the accuracy ratio, 

AUC (area under the ROC curve), and the decile ranking. We use an 80–20 train-test split in Panel A and pre- 

20 07/post-20 08 splitting in Panel B. The predictors are the accounting ratios and stock market data defined 

in Table 3 . 
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redictors, the average embedding model significantly outperforms

he logistic regression model in both test samples ( p < 0.001). Sim-

lar comparisons between average embedding model and other

enchmark models yield similar results. 

.2.2. Prediction performance using numeric data 

Table 5 summarizes the prediction results using only the nu-

erical variables listed in Table 3 . We compare the three deep

earning models for numerical data (described in Section 4.3) with

he same benchmark model set as in Table 4 , such as logistic
egression, SVM, and random forest model. When splitting the

rain-test data randomly (Panel A), among the three deep learning

odels, the DL-1 Layer model delivers the highest AUC value of

.817 and the accuracy ratio value of 0.633. The DL-1 Layer model

lso captures the most default events in its top decile and quintile.

hen the three benchmark models are included in the compar-

son, however, the deep learning models demonstrate similar per-

ormances as the benchmark models. For example, the random for-

st has the best AUC and accuracy ratio while the SVM has the

ighest top decile performance. 
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Fig. 4. Performance comparison with different forecasting horizons (10 × 10 CV). 
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The Salzberg binomial test confirms such comparable per-

formances that the best-performing deep learning model (DL-1

Layer) is not significantly different from the random forest model

( p = 0.315). Similar observations hold when we use the post-2008

data as the test set (Panel B). The DL-1 Layer has the best first-

decile performance, but the random forest has the highest AUC.

Overall, our results suggest that when numerical data are used as

predictors, there is no compelling reason to use deep learning. Tra-

ditional data mining models, especially those that can find non-

linear decision boundaries such as SVM and Random Forest, are

equally capable. 

5.3. Longer prediction horizons 

It is critical to identify high default risk as early as possible

in default risk management. Therefore, we extend our study to

examine how the models’ prediction performances change as

we increase the prediction horizon to a longer time. Instead of

mapping the firm outcomes to MD&A, market-based variables,

and accounting-based ratios from 1-year prior to the event, we

create new training datasets based on information from two or

three years prior to the bankruptcy events. We further carry out

a 10 × 10 cross-validation for each model to assess the variability

of the model performance as different test samples are used. Fig.

4 depicts a summary of different models’ prediction performance

at different prediction horizons 6 . The error bars indicate the 95%
6 We pick the most representative models for visualization. DL-Deep and DL- 

ide have similar performance as DL-1 Layer. SVM is excluded from the analysis 

because the computational time is prohibitive for 10x10 CV. 

d  

p  

f  

t  

t

onfidence band. Fig. 4 (a) shows that, consistent with the results

rom one-year-ahead prediction horizon, the average embedding

odel continues to outperform the logistic regression model

nd random forest model when using the MD&A data. When

sing market-based and accounting-based data, however, the

est-performing deep learning model only delivers comparable

esults as the benchmark models. The conclusion holds across all

he prediction horizons we studied. We also notice that the longer

rediction horizon yields the inferior prediction performance (i.e.,

ecreasing AUC values) and the smaller performance gaps between

he four models. This is not surprising due to the loss of timely

nformation used in prediction. Lastly, for the one-year-ahead and

wo-year-ahead prediction, the performance using numeric data is

uperior to that of using text data. However, for the 3-year-ahead

rediction, their performance gap wanes. 

.4. Prediction using both textual and numerical data 

We now investigate the prediction performance when both tex-

ual data and numerical data are utilized. Although correlational

vidence suggests that textual data contain additional informa-

ional value even when numerical data is available ( Loughran &

cdonald, 2011 ), whether a model can leverage such information

or bankruptcy prediction is not clear. Fortunately, creating a deep

earning model for mixed inputs is straightforward. We concate-

ate the final hidden layers (4 neurons) from the average embed-

ing model with the hidden layer (4 neurons) from the DL-1 Layer

odel. Then, we connect the 8-neuron layer to a softmax output

ayer. Such architecture ensures that multiple levels of neural net-

orks can first extract the best representation from the respective

aw inputs. Using the higher-level learned representations, both

he textual input data and the numerical input data can contribute

o the prediction outcome. We can create a mixed input for logistic

egression and random forest by concatenating the document-term

atrix and the numeric input matrix side by side. The difference is

hat these traditional models can only combine the mixed inputs in

heir raw forms, without the extra layers of abstraction that deep

earning can help find. 

The prediction results of the experiment are presented in

able 6 and Fig. 5 . For both train-test sample splitting methods,

ur deep learning model outperforms the logistic regression and

andom forest. Indeed, a simple concatenation of the last hid-

en layer from the DL-Embedding and the only hidden layer from

he DL-1 Layer is sufficient for the training algorithm to find a

odel with the best out-of-sample performance. The 1-year-ahead

ut-of-sample performance of [DL-Embedding + DL-1 Layer] model

ields an AUC value of 0.856 when using random split and 0.842

hen splitting by year. In contrast, the AUC value of the logistic re-

ression drops to 0.753 when using random split and 0.745 when

plitting by year) when dealing with the mixed inputs. The AUC is

ven worse than the case with numerical data only (AUC 0.808 and

.771, respectively), suggesting that when mixed inputs are used,

he logistic regression model is incapable of self-selecting the most

elevant features. 

Figure 5 further confirms the superiority of the [DL-

mbedding + DL-1 Layer] model over the logistic regression and

andom forest model. The comparison of the three correspond-

ng ROC curves shows that the deep learning model dominates

he two benchmark models across a wide spectrum of cutoff

robabilities. The Salzberg binomial test also confirms that the

eep learning model has delivered significantly better prediction

erformance compared to the two benchmark models ( p < 0.001

or both tests). In summary, deep learning can effectively capture

he most relevant features from the MD&A text to complement

he numeric data. 
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Table 6 

One-year ahead out-of-sample performance using 10-K text, accounting and market data. 

Panel A: Random split 

DL-Embedding + DL-1 layer Logistic regression Random forest 

Accuracy Ratio 0.712 0.507 0.639 

AUC (%) 0.856 0.753 0.819 

1 0.547 0.369 0.511 

2 0.725 0.571 0.677 

3 0.891 0.666 0.807 

4 0.926 0.725 0.890 

5 0.937 0.832 0.913 

6–10 1 1 1 

Panel B: Split by year 

DL-Embedding + DL-1 Layer Logistic regression Random forest 

Accuracy Ratio 0.685 0.491 0.585 

AUC (%) 0.842 0.745 0.793 

1 0.587 0.326 0.446 

2 0.750 0.554 0.62 

3 0.826 0.641 0.728 

4 0.870 0.728 0.837 

5 0.880 0.848 0.902 

6–10 1 1 1 

Note : The table reports the out-of-sample performance measures for the test set, including 

the accuracy ratio, AUC (area under the ROC curve), and the decile ranking. We use an 80- 

20 train-test split in Panel A and pre-20 07/post-20 08 splitting in Panel B. The predictors 

are the 10-K text, accounting ratios and stock market data. 

Fig. 5. Comparison of ROC curves using mixed inputs. 
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.5. Important words from MD&A 

The improved predictive performance of deep learning mod-

ls comes with a cost – the poor interpretability. Large parameter

pace and the interaction between neurons prevent us from inter-

reting the model coefficients directly. To find which words in the

D&A section are important, we use the representation erasure

ethod ( Li, Monroe, & Jurafsky, 2017 ). Representation erasure is a

eneral method for analyzing and interpreting decisions made by

 black-box model. We erase individual words from the input cor-

us and observe how the model performance degenerates. If the

odel’s AUC decreases by a large amount when we remove a par-

icular word from the entire corpus, the model considers the word

o be important. In practice, we replace the word index i prior to

he n × d document representation (step 1 in Fig. 3 ) using 0, which

s the padding token. We then calculate the importance score for

ord i as the difference between DL-Embedding model’s AUC and

he AUC of the same model but with the erased input. 
We present 100 words with the highest importance scores in

able 7 . We separate them into two groups by comparing their

elative frequencies in bankruptcy firms and non-bankruptcy firms.

ntuitively, we can interpret the important words with higher fre-

uency in bankruptcy firms as words with negative meanings and

ice versa. We also cross-check the words with two widely-used

entiment dictionaries: Loughran and McDonald (2011) ’s financial

entiment dictionary and the MPQA Subjectivity Lexicon ( Wilson,

iebe, & Hoffmann, 2005 ). The words that appear in both dictio-

aries are marked in Table 7 . Interestingly, many words that our

odel considers important are not in either dictionary. This sug-

ests that bankruptcy prediction from text is more nuanced than

entiment analysis. In addition to the words related to firm’s per-

ormance, we find many words in other factors such as capital

tructure ( repurchase , dividend, tranche ), strategy ( international, exit,

ocus ), internal and external stakeholders ( compensation, wages ,

osts , suppliers ) also demonstrate high importance in bankruptcy

rediction. 
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Table 7 

Important words in the MD&A text. 

Non-bankruptcy Firms Bankruptcy Firms 

income, increase, increased, future, revenues, rate, intangible, profit , 

compensation, growth, tax, percentage, goodwill , cash, value , investment, 

improved , term, compared, economic, products, intangibles, changes, 

revenue, repurchases, outstanding , invested, repurchased, marketable, rates, 

repurchase, electronic, strong , expenditures, construction, maturity , 

imaging, credit, accounts, dividend, latest, excluding, international, bank, 

ebitda, holdings, suppliers, well , partners, long 

loss , services, trust, initial, decrease , fees, sale, public, extraordinary, ended, structure, 

managed, measurements, inception, recourse, inventory, room, accordingly, expenses, 

serviced, approval, prime, restated , incurred, stores, indebtedness, secured, certificates, 

discontinued , affiliate, convertible, exit, tranche, servicing, focus, backed, announced, 

disposal, mortgage, joint, reset, aggregate, conversion, generated, production, received, 

costs, receivables, selling, wages 

Note : The table lists the 100 most important words using the representation erasure method. The bold words are in Loughran and McDonald (2011) ’s financial sentiment 

dictionary. The underscored words are in MPQA sentiment dictionary ( Wilson et al., 2005 ). 
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6. Conclusion 

As a large amount of unstructured data is injected into the mar-

ket every day, investors, regulators, and researchers demand more

intelligent models to digest such information. Motivated by the

successful utilization of deep learning in areas such as computer

vision and speech recognition, we introduce deep learning mod-

els for bankruptcy prediction using both structured (accounting-

based and market-based) and unstructured (MD&A from 10-K

filings) inputs. We construct a comprehensive dataset of U.S. pub-

lic firms and show that recent advancements in neural networks

can extract useful representations from financial texts for pre-

diction. Deep learning lends itself particularly well to analyzing

textual data, but the improvement on numerical data is limited

compared with traditional data mining models. Moreover, deep

learning can effectively integrate the incremental information from

textual data with numeric information and achieve better predic-

tion accuracy than using a single form of input. 

Our findings have implications beyond identifying the best pre-

diction model. The broader concern is with the utility and in-

formation value of firms’ textual disclosures. Beaver (1966) , a

pioneer of bankruptcy prediction research, argues that account-

ing data should be evaluated in terms of their utility, which

in turn can be defined in terms of predictive ability. Shumway

(2001) introduced the market-based predictor variables for fore-

casting bankruptcy. Along the two popular mainstreams using

market-based and accounting-based information to predict dis-

tress, many studies such as Campbell et al. (2008) propose modifi-

cations to those variables. Different from the seminal works afore-

mentioned, we evaluate the predictive power of textual disclosures

in annual reports — a brand new data source with wide circulation

— to test. Our results provide direct, large-sample evidence of tex-

tual disclosure’s information value. The AUC values for data models

for the 1-year ahead forecast, depending on the model we use, are

between 0.711 and 0.784. When the forecasting horizon is longer

(3-year), the predictive value of unstructured text is comparable to

audited accounting ratios and market data. Therefore, integrating

textual disclosures into risk models could provide great insights. 

Our study has several limitations which prompt future investi-

gations. First, deep learning models, like many other artificial in-

telligence systems that use unstructured data, is difficult to in-

terpret. Opening the black box of a trained neural network could

shed light on the nature of the disclosure that leads to future

bankruptcy. Second, our study only uses MD&A as the sole source

of unstructured data. Future research can investigate the value of

other channels such as news reports and user-generated content.

Third, many up-and-coming deep learning models are not explored

in our study. Techniques such as Long Short Term Memory (LSTM)

networks can exploit the time series structure in the data for pre-

diction. Lastly, in our empirical analysis, we adopt the Area under

the ROC curve (AUC) and the decile-ranking table to evaluate our

model’s bankruptcy prediction performance. Future research can

further explore other measures such as H-measure ( Hand, 2009 )
r Kolmogorov-Smirnov goodness-of-fit test statistics. We view our

tudy as a potentially useful first step in applying deep learning to

redict economic outcomes using large-scaled text data. 
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ppendix 

In this appendix, we explain how we construct each candidate

redictive variable using the CRSP and/or COMPUSTAT data items.

XCESS RETURN is a firm’s log excess return on its equity relative

o that on the S&P 500 index. SIGMA is the standard deviation of

he daily stock return observed over the previous three months.

RICE is the equity price per share truncated from the above at the

alue of $15 and then takes the logarithm. MB is the ratio of the

arket equity to the adjusted book equity to which we add a 10%

ifference between the market equity and book equity. All series

re available to investors in real time. Below we provide details for

he other numeric variables. 

ACTLCT = ACT/LCT; APSALE = AP/SALE; CASHAT = CHE/AT; 

CASHMTA = CHE/(PRICE ∗SHROUT + LT + MIB); 

CHAT = CH/AT; CHLCT = CH/LCT; (EBIT + DP)/AT = (EBIT + DP)/AT; 

EBITAT = EBIT/AT; EBITSALE = EBIT/SALE; 

FAT = (DLC + 0.5 ∗DLTT)/AT; 

INVCHINVT = INVCH/INVT; INVTSALE = INVT/SALE; 

(LCT-CH)/AT = (LCT-CH)/AT; LCTAT = LCT/AT; LCTLT = LCT/LT; 

LCTSALE = LCT/SALE; LTAT = LT/AT; 

LTMTA = LT /(PRICE ∗SHROUT + LT + MIB); LOG(AT) = log(AT); 

LOG(SALE) = log(abs(SALE)); 

NIAT = NI/AT; NIMTA = NI/(PRICE ∗SHROUT + LT + MIB); 

NISALE = NI/SALE; 

OIADPAT = OIADP/AT; OIADPSALE = OIADP/SALE; QALCT = (ACT –

INVT)/LCT; 

REAT = RE/AT; RELCT = RE/LCT; RSIZE = log(PRICE ∗SHROUT/ 

TOTVAL); 

SALEAT = SALE / AT; SEQAT = SEQ/AT; WCAPAT = WCAP/AT. 
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